
1 TITEL DES KAPITELS

Titel der Publikation

Systems Engineering
and Agile Methods

prostep ivip White Paper

Systems Engineering and Agile Methods
How to Combine Agility with Systems Engineering

Version 1, March 2024

White Paper

White Paper 2
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Abstract

This white paper focusses on how systems engineering and agile approaches could complement each other.
It describes a framework that can be used to embed agile development into a systems engineering driven
product development process. Such a framework must consider constraints given by large projects and large,
historically grown organizations. Therefore, this white paper makes suggestions on how to adapt the
framework to the different contexts and projects found in real world. It also explains how the framework can
be embedded into a classic Product Development Process (PDP).

The “Agile SE” framework described in this whitepaper has many similarities with the Scaled Agile Framework
(SAFe). Several ideas from SAFe were adopted in Agile SE. However, Agile SE is not SAFe as it embeds
those ideas in a context of systems engineering and a typical Product Development Process (PDP) and
describes, how they can coexist.

Disclaimer

prostep ivip documents (PSI documents) are available for anyone to use. Anyone using these documents is
responsible for ensuring that they are used correctly.

This PSI documentation gives due consideration to the prevailing state-of-the-art at the time of publication.
Anyone using PSI documentations must assume responsibility for his or her actions and acts at their own risk.
The prostep ivip Association and the parties involved in drawing up the PSI documentation assume no liability
whatsoever.

We request that anyone encountering an error or the possibility of an incorrect interpretation when using the
PSI documentations contact the prostep ivip Association (psi-issues@prostep.org) so that any errors can be
rectified.

Copyright

I. All rights to this PSI documentation, in particular the right to reproduction, distribution and translation
remain exclusively with the prostep ivip Association and its members.

II. The PSI documentation may be duplicated and distributed unchanged in case it is used for creating
software or services.

III. It is not permitted to change or edit this PSI documentation.

IV. A notice of copyright and other restrictions of use must appear in all copies made by the user.

White Paper 3
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Content

Table of Content

Content ... 3

Abbreviations ... 6

1 Intoduction .. 7

1.1 Smart Systems Engineering .. 7

1.2 Motivation ... 8

2 Typical Situations Observed ... 9

2.1 Top-Rated Issues ... 9

2.2 Typical Observations ... 9

2.3 Key Findings .. 10

3 The Agile SE Framework ... 12

3.1 Summary .. 12

3.2 Key Principles .. 14

3.3 Organization ... 26

3.4 Events .. 32

3.5 Enablers ... 34

4 Agile SE along the PDP.. 35

4.1 Key Principles .. 36

4.2 Agile SE Along the Phases .. 38

5 Comparison with SAFe .. 39

6 Summary ... 41

7 Outlook .. 42

8 References .. 43

White Paper 4
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figures

Figure 1: Missions of the Smart Systems Engineering Group .. 7

Figure 2: Work Packages in Phase 5 .. 7

Figure 3: Our approach ... 8

Figure 4. Agile SE - Big Picture ... 12

Figure 5: Alignment with the V-Model ... 14

Figure 6: Balancing Requirements between Sprints and PIs .. 15

Figure 7: Program Increments on Medium Level of V-Model .. 16

Figure 8: Sprints on Lower Levels of V-Model .. 16

Figure 9: Nested Iterations .. 17

Figure 10: Apply Cadence ... 18

Figure 11: Choose Appropriate Sprint Length for Domains .. 18

Figure 12: Guardrails and PI Objectives ... 19

Figure 13: Define PI Objectives Incrementally .. 20

Figure 14: Align Requirements Frequently .. 20

Figure 15: Cross Team Alignment ... 21

Figure 16: Frequent Integration - At least once per PI .. 22

Figure 17: Top Level of V-Model Handled by a Roadmap .. 23

Figure 18: Phases Span across Multiple Program Increments ... 23

Figure 19: Alignment of Major Milestones with Program Increments .. 23

Figure 20: Flexibility in Roadmap and Concept... 24

Figure 21: Traditional and Agile Teams .. 24

Figure 22: Synchronize after each Program Increment .. 25

Figure 23: Balance between Agile and Traditional Teams .. 25

Figure 24: Product Team ... 26

Figure 25: Requirements Team ... 26

Figure 26: Agile Development Teams ... 27

Figure 27: Integration Team .. 28

Figure 28: System Team ... 28

Figure 29: Sponsors .. 29

Figure 30: Product architects .. 29

Figure 31: Product Management ... 29

Figure 32: Program Scrum Master .. 30

Figure 33: Requirements Engineers .. 30

Figure 34: Product Owner ... 30

Figure 35: Scrum Master ... 31

Figure 36: Developer ... 31

Figure 37: Team Architect ... 31

Figure 38: Example of a Product Development Process .. 35

Figure 39: Agile SE Along the PDP ... 35

White Paper 5
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 40: Independent Agile SE Organizations ... 36

Figure 41: Ramp-Up Phase of an Agile SE Organization ... 37

Figure 42: Full Working Mode of an Agile SE Organization .. 37

Figure 43: Ramp Down of an Agile SE Organization .. 38

Figure 44: Product Development Process ... 38

Tables

Table 1: Program Level Events ... 32

Table 2: Team level events ... 33

Table 3: Similarities between Agile SE and SAFe 6 ... 39

Table 4: Differences between Agile SE and SAFe 6 ... 40

White Paper 6
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Abbreviations

Abbreviation Definition Description

Agile SE Agile Systems Engineering A framework for combining agility with systems engineering

MBSE Model Based Systems
Engineering

PBI Product Backlog Item An entry in the product backlog. This can be features but
also tasks for providing the architectural foundation or
prototypes.

PDP Product Development
Process

The process of developing a product from the first idea until
start of production.

PI Program Increment The long iteration cycle in SAFe. A typical duration is two or
three months.

PIP Program Increment
Planning

An event at the beginning of each PI, to plan the objectives
and identify the dependencies for the next PI.

PM Project Management

SAFe Scaled Agile Framework A framework for a scaled agile approach, provided by
Scaled Agile inc. See also: (Scaled Agile, 2023)

SE Systems Engineering

Sprint Sprint An iteration cycle in Scrum. Also, the short iteration cycle in
SAFe. A typical duration is two or three weeks.

White Paper 7
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

1 Intoduction

1.1 Smart Systems Engineering

For more than 12 years the prostep ivip Smart Systems Engineering (Smart SE) project group has focused on
collaborative simulation-based engineering. In five different phases the Smart SE group has handled various
aspects of collaborative simulation-based engineering. The current project phase focuses on collaborative
development:

Figure 1: Missions of the Smart Systems Engineering Group

There are five work packages in Phase 5. One of the work packages, the work package “Systems Engineering
and Agile Methods”, deals with the combination of systems engineering and agile methods.

Figure 2: Work Packages in Phase 5

Enabling collaborative development of complex products by

simulation along a multi tier supply chain.

Mission Phase 5
(2022-2024)

Investigation of the use and best practices of the ”Functional Mock-up

Interface” (FMI) for the neutral simulation model exchange

Mission Phase 1
(2012-2013)

Establish developed industry best practices to ease the required

exchange of simulation models.

Mission Phase 2
(2014-2015)

Intensify the cooperation activities with other projects and further focus

on enhancements to the recommendation with necessary core

technologies as IP protection and data handling.

Mission Phase 3
(2016-2018)

Building blocks for Simulation-Based Decision Making, Industrialization

of FMI and Modelling & Simulation Standards for V-ECUs.

Mission Phase 4
(2019-2021)

Enabling collaborative development of complex products by

simulation along a multi tier supply chain.

Mission Phase 5
(2022-2024)

Extension of the V-Model to

more stages of the life cycle

Considering the simulation

along the supply chain

Cooperation of SE

and agile methods

Standardization and

Project Landscape

Dealing with abstraction

and modeling

Enabling collaborative

development of complex

products by simulation

along a multi tier supply

chain.

Mission Smart SE

Phase 5 (2022 - 2024)

Systems Engineering

and Agile Methods

White Paper 8
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

This white paper is the result of this work package. It was created based on expert interviews, expert
workshops, and close collaboration within the Smart SE group.

Figure 3: Our approach

1.2 Motivation

Agility becomes more and more important in modern development processes. Time to market and the pressure
to innovate require changes until late in the development process. Agility promises to deliver in shorter time
frames, less cost and with better business outcome.

On the other hand, many complex systems require complex architectures, approaches like MBSE or a strict
traceability from top-level requirements down to implementation. Large, complex and expensive products
cannot be easily refactored to implement missing features or correct architectural decisions. A thorough
planning in advance is often required to avoid expensive refactoring and loss of time. That’s where systems
engineering has its advantages.

In real world, both approaches often exist in parallel. You can frequently observe that mechanical and
electronic development follow a traditional V-Model approach managed by MBSE and systems engineering,
while software is often developed incrementally and agile. Quite often, those two approaches exist without
clear interfaces. Agile developers complain about their environment “not providing requirements fast enough”.
System engineers complain about agile teams “being unreliable” and “not doing what they should”. They are
“too agile”.

This white paper introduces a new Agile Systems Engineering (Agile SE) approach, which aims to bridge
between those two worlds. Agile SE is a framework, that can be used to embed agile development into a
system engineering driven product development process.

It considers constraints typically observed in large projects or large, historically grown organizations and makes
suggestions on how to adapt to the different contexts and projects found in real world. It also explains, how
the framework can be aligned with the V-Model and how it can be embedded into a classic Product
Development Process (PDP).

Expert
Interviews

Expert
Work-
shop

Creation and
refinement of
Big Picture

Creation of
White Paper

1

Aug 2022

2

Sept. 2022

3

Nov. 2022

4

July 2023

Publication

5

Jan 2024

White Paper 9
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

2 Typical Situations Observed

Collaboration between agile and systems engineering can be quite complex and is often specific to the
individual project or organization. To better understand typical, real-world issues when combining agility within
systems engineering, the authors of this white paper conducted interviews with eight experts from agile and
systems engineering domains:

• One expert had a mostly stage-gate driven background.

• Two experts had a pure systems engineering background.

• Two experts had a pure agile background.

• Three experts had a combined agile and systems engineering background.

All experts had an industrial background:

• Automotive OEM

• Automotive supplier

• Mobility & Consumer industry

The experts were asked to answer questions based on their personal experience out of the following
categories:

• Personal background

• Typical issues in collaboration of software development and systems engineering

• Own experiences with integration of agile methods with system engineering

• Connection to simulation and test

• Own experiences with integration of partners

• Ideas for a green field approach

• Boundaries and success factors

The subsequent chapters elaborate the interview results in more detail.

As only eight experts where interviewed, the interviews are not representative. However, they give ideas about
typical issues and typical approaches. Since all experts came from the industrial sector, further investigations
should be made which adjustments to the Agile SE approach are needed for other domains like, for example,
health care, finance or construction.

2.1 Top-Rated Issues

Based on the expert-interviews the following top-rated issues and challenges were identified:

• Requirements are always too late.

• Different cycle lengths or quality gates. Unaligned sync-points.

• Finding the right degree of architecture.

• Coordination of product-changes.

2.2 Typical Observations

The interview-partners made the following observations:

• Inappropriate milestones:

Milestones are often artefacts to be handed over. But this kind of milestone does not inform about the
maturity of the product. It would be better to have milestones describe a certain maturity that must be
achieved at a given point of time. Maturity should be measured by availability of important functionality.

• Unclear responsibilities:

Responsibility differs between classical and agile teams: agile teams take full responsibility for their
results whereas in a classical line organization responsibility is within the hierarchy.

• Overlooked synergies:

Synergies between systems engineering and software development are not realized: systems
engineering and software development are considered as opposite. But systems engineering can be
nicely used to fill the product backlog, instead.

White Paper 10
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

• Misunderstood models:

A V-Model describes a logical sequence and not a timeline.

• Unaligned language:

Terms are differently used. Also, the difference between user stories and use cases is often not
understood.

• Transparency:

Agility requires transparency - that’s not always wanted.

• Shared understanding:

No shared understanding. Does everyone know, what we are doing?

• Understand limitations of others

Make technical limitations of other disciplines visible: what can be achieved within a certain domain
and what not. Ideally use models for that.

• Think in solutions, not in requests:

People should talk in options for solutions instead of requests to others. Avoid: „Someone else must
solve this".

• Missing feedback for requirements:

Some requirement engineers don’t understand a problem and don’t accept feedback. Specifications
should be created in agile iterations. Customer of a specification is the development team.

• Acceptance criteria:

Missing or badly captured acceptance criteria are a challenge.

• Missing focus:

Developer work on too many functionalities in parallel.

• Communication:

We talk a lot – but that’s required!

2.3 Key Findings

Those top-rated issues and typical observations can be boiled down to four key findings:

• Rethink milestones

• Consider SAFe

• Simulations are essential for product maturity.

• Different cultures and culture changes are a major concern.

They are explained in more detail in the next chapters.

2.3.1 Rethink Milestones

Milestones used to be quality gates, that must be fulfilled to 100%. But this requires a detailed planning in
advance, which quite often quickly becomes obsolete, due to unforeseen changes or impediments.

Therefore, guardrails, a vision or purpose should be provided instead of fixed quality gates. This leaves space
for the development teams to develop the details of the solution themselves and just-in-time.

Milestones should describe a maturity that must be achieved at a given point of time. Maturity should be
measured by availability of important functionality.

Work packages should be synchronized frequently. Synchronization only at certain milestones should be
avoided.

White Paper 11
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

2.3.2 Consider SAFe

Having a framework for collaboration is essential. SAFe is a good blueprint which can be adjusted to the own
needs. It provides good ideas and puts the customer in focus. Three out of eight of the interviewed experts
consider SAFe as a suitable approach. (The others didn’t mention SAFe.)

SAFe suggests using different cycle length with frequent synchronizations. For Agile SE this could be applied
as: agile development in frequent cycles and systems engineering in longer cycles. Synchronization is
essential.

Any agile approach should aim for Minimum Viable Products (MVPs) to provide value as early as possible.

2.3.3 Simulations are Essential for Product Maturity.

Most experts consider simulation and tests as essential to foster product maturity.

2.3.4 Different Cultures and Culture Changes are a Major Concern.

Different cultures can significantly impede communication and conflicts can arise from that. Early adopters
might quickly adopt new agile approaches whereas others need every single step explained. It is quite common
to observe so called “agile teams” that are not willing to think agile. Cultural changes are difficult and require
a good leadership.

White Paper 12
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3 The Agile SE Framework

3.1 Summary

The conducted interviews highlighted significant challenges in the collaboration between agile approaches
and systems engineering. Based on these observations, four key findings motivated the development of the
Agile SE framework – (1) Milestones need to be rethought, (2) SAFe should be considered as a reference
framework, (3) Simulations are essential for product maturity, and (4) Different cultures and culture
changes are a major concern and need to be addressed.

Incorporating these findings, the Agile SE framework was developed. The overall framework is based on:

• A big picture,

• Fifteen key principles,

• An Agile SE organization

• Team- and program-level events, and

• Enablers

They all will be explained in detail in the following chapters.

Figure 4 shows the big picture of Agile SE.

Figure 4. Agile SE - Big Picture

A core element of Agile SE are the 15 key principles, which are explained in chapter 0. A fundamental
principle out of those is the alignment of Agile SE with the V-Model. This is explained in detail in chapter
3.2.1.

To ensure the facilitation of the key principles and practices a corresponding Agile SE organization needs to
be set up. Thus, the framework includes descriptions of the required teams – product-, requirement-,
development-, integration-, and system-team. Further, specific roles and stakeholders are identified and
described. Read more in chapter 3.3.

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

Product Concept &

Product Architecture

Sponsors

R
e

q
u

ir
e

m
e

n
ts

-E
n

g
in

e
e

ri
n

g
 &

P
ro

d
u

c
t
A

rc
h

it
e

c
tu

re

D
e

v
e

lo
p

m
e

n
t

a
g

ile
tr

a
d

it
io

n
a

l

…

Developer

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Δ Δ Δ Δ Δ

White Paper 13
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

The progress of a project within the Agile SE framework is driven by team and program-level events,
supporting continuous improvement through iterative practices, aligning goals, and encouraging seamless
coordination. They are described in more detail in 0.

The framework unfolds its full potential when the five identified enablers are taken into account – the presence
of an agile culture, use of modelling and simulation as well as rapid prototyping, a modular and change-
friendly product architecture and frequent and automated testing. Read chapter 0 for a detailed
description.

Most often, organizations already have product development processes in place. Therefore, Agile SE is
designed to be integrable into existing processes. To emphasize this aspect, Agile SE provides guidelines on
how to set up independent organizations, how these organizations should be handled during ramp-up, full
working mode and ramp-down phases. Chapter 4 describes, how Agile SE can be embedded into a product
development process and explains how it evolves over the phases of the PDP.

Agile SE is inspired by the SAFe framework. Many concepts of the SAFe framework can be found in Agile SE.
However, Agile SE is not SAFe, as it introduces additional elements and ignores others. Instead, Agile SE
should be considered as a different view on SAFe. In general, Agile SE is compatible with SAFe.

In conclusion, Agile SE provides a novel industry and product agnostic framework combining agility and
systems engineering in alignment with the SAFe framework and the Smart SE V-Model.

White Paper 14
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2 Key Principles

The Agile SE big picture incorporates fifteen key principles:

1. Align agile SE layers to V-Model layers appropriately.
2. Use nested iterations.
3. Apply cadence.
4. Choose appropriate sprint length for domains.
5. Provide PI objectives and PI guardrails instead of fixed deliveries at quality gates.
6. Define PI objectives incrementally.
7. Align requirements frequently.
8. Foster communication across the teams.
9. Integrate frequently.
10. Define a high-level roadmap.
11. Align major milestones with program increments.
12. Handle roadmap and concept with appropriate flexibility.
13. Allow coexistence of traditional and agile teams.
14. Synchronize after each program increment.
15. Balance between agile and traditional teams.

They are described in the subsequent chapters.

3.2.1 Align Agile SE Layers to V-Model

One of the fundamental principles of Agile SE is its alignment with the V-Model:

Figure 5: Alignment with the V-Model

Each level of the Agile SE framework level has different roles, tasks and events assigned. Depending on the
project, different requirement levels of the V-Model can be matched to the Agile SE levels.

More traditional projects may choose to define requirements with a higher level of detail by traditional systems
engineering. In those environments, agile teams will focus mainly on implementation and only few decisions
will be made by the agile teams.

More agile organizations will rely on the power and collective intelligence of the agile development teams and
provide requirements only to a medium level of detail, allowing the teams to figure out the concrete solution
themselves.

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

Product Concept &

Product Architecture

Sponsors

R
e

q
u

ir
e

m
e

n
ts

-E
n

g
in

e
e

ri
n

g
 &

P
ro

d
u

c
t
A

rc
h

it
e

c
tu

re
D

e
v
e

lo
p

m
e

n
t

R
o

a
d

-

m
a

p
a

g
ile

tr
a

d
it
io

n
a

l

…
Developer

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Δ Δ Δ Δ Δ

White Paper 15
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Agile organizations with a high level of agility will establish self-organizing teams, that figure out themselves
the best way to deliver even complex features. In such environments, the role of systems engineering changes
more to coaching and supporting the agile teams in finding the best solution and systems engineering focuses
on the high- and medium level-architecture, with tendency to the higher levels.

Figure 6 visualizes how handling of lower and medium level requirements can be flexibly balanced between
systems engineering and agile development teams, depending on the context of the organization or project.

Figure 6: Balancing Requirements between Sprints and PIs

3.2.2 Use Nested Iterations

Another key element of Agile SE are nested iterations: program increments and sprints.

Program Increments (PIs) are long iterations with a typical duration between two and three months. They are
used to plan the next features to be implemented based on the outcomes achieved in the previous iterations.
At the start of each new program increment the following activities should be performed:

1. Review the outcomes of the previous program increments and the project context. Did we achieve,
what was expected? Are there impediments that require adjustments of the plan? Are there changes
in market or environment, that result in new or modified requirements that must be incorporated in
the plan?

2. Review the overall roadmap and adjust it where necessary.
3. Perform a retrospective on the Agile SE way of working. Adjust it, where necessary in the sense of

continuous improvement.
4. Identify and plan the features, that should be implemented in the next program increment. (program

increment planning event)
5. Identify the teams, who should implement each feature.
6. Identify dependencies between collaborating teams.

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

Product Concept &

Product Architecture

Sponsors

R
e

q
u

ir
e

m
e

n
ts

-E
n

g
in

e
e

ri
n

g
 &

P
ro

d
u

c
t
A

rc
h

it
e

c
tu

re

D
e

v
e

lo
p

m
e

n
t

R
o

a
d

-m
a

p
a

g
ile

tr
a

d
it
io

n
a

l

…

Developer

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Δ Δ Δ Δ ΔProgramm Iterations

Sprints

White Paper 16
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Program increments typically iterate with moderate frequency through the medium and lower levels of the V-
Model (Figure 7):

Figure 7: Program Increments on Medium Level of V-Model

The main purpose of program increments is to frequently gather feedback and allow adjustments to the plan
and the way of working. Therefore, the duration of program increments should not be too long. On the other
hand, the duration should not be too short to avoid significant overhead. It is important to find the right balance.
For many projects a duration between two and three month is a good compromise.

Sprints are short iterations, nested into program increments. They are used to implement the features planned
for the program increment.

Sprints typically iterate with higher frequency through the lower levels of the V-Models (Figure 8):

Figure 8: Sprints on Lower Levels of V-Model

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

Product Concept &

Product Architecture

Sponsors

R
e
q
u
ir

e
m

e
n
ts

-E
n
g
in

e
e
ri

n
g
 &

P
ro

d
u
c
t
A

rc
h
it
e
c
tu

re
D

e
v
e
lo

p
m

e
n
t

R
o
a
d

-

m
a
p

a
g
ile

tr
a
d
it
io

n
a
l

…
Developer

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Δ Δ Δ Δ Δ

Program

Iteration

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

Product Concept &

Product Architecture

Sponsors

R
e
q
u
ir

e
m

e
n
ts

-E
n
g
in

e
e
ri

n
g
 &

P
ro

d
u
c
t
A

rc
h
it
e
c
tu

re
D

e
v
e
lo

p
m

e
n
t

R
o
a
d

-

m
a
p

a
g
ile

tr
a
d
it
io

n
a
l

…
Developer

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Δ Δ Δ Δ Δ

Sprints

White Paper 17
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

At the start of each sprint the following activities should be performed:

1. Break down the planned features into tasks (or user stories), to implement them.
2. Review the outcomes of the previous sprint.
3. Maintain the team backlog
4. Plan the next sprint.
5. Perform a retrospective on team’s way of working. Adjust it, where necessary.

This is standard scrum and will not be elaborated in more detail in this white paper. For more details see
(Scrum.org, 2023).

A typical sprint length for software development is between two and four weeks. Chapter 3.2.4 explains, how
to handle sprint length for other domains like mechanical engineering.

Figure 9 shows, how sprints are nested into program increments:

Figure 9: Nested Iterations

3.2.3 Apply Cadence

Sprints and program increments are the mayor types of iterations in the Agile SE framework. Those iterations
should be synchronized across all teams. That means: sprints and program increments start and stop for all
teams at the same time. This is mainly done to provide a common rhythm for frequent integration. If all teams
had different sprint lengths and different starting times, delivering a fully integrated increment would become
a challenge. There would be always something “in work”, that prevents integration.

It is good practice, not to vary sprint length. Once a certain sprint rhythm was established, the organization
should stick to that rhythm, no matter if there are public holidays or vacation times in-between. This significantly
improves plannability. If a sprint has fewer working days due to public holidays, teams should consider this by
planning less features for this sprint. But the sprint length should not be changed.

Ideally, the length of program increments should not vary either. However, it might be necessary to slightly
vary the length of program increments for better synchronization with milestones or release dates (see also
chapter 3.2.11). This should be planned carefully, and modified dates should be published well in advance.
We suggest that program increment lengths should not vary by more than one sprint.

Product Team

Dev Teams

Program Increments

Sprints

White Paper 18
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 10: Apply Cadence

3.2.4 Choose Appropriate Sprint Length for Domains

In many situations it is impossible to find one sprint length that suits all technical domains. While a sprint length
of two weeks is well suitable for software development, it might be too short for mechanical engineering or
domains that involve physical prototying. In this case, teams working in certain domains may decide to work
in longer sprints that are a multiple of the underlying sprint length.

The sprint length of the underlying sprint rhythm should be short. A two-weeks sprint cycle for the underlying
sprint rhythm it is recommended.

To foster integration, cadence should be maintained, even with teams having different sprint lengths. There
should be regular dates, where all sprints end at the same time, allowing to integrate and test as much as
possible of the integrated product. A combination of a four-week sprint with a six-week sprint is, for example,
not recommended.

Example of possible sprint cycles:

• Software development: two weeks

• Mechanical engineering 1 (mainly using virtual prototypes): two weeks

• Mechanical engineering 2 (mainly using 3D printed prototypes): four weeks

• Mechanical engineering 3 (mainly using tool-based prototypes): eight weeks

In general, sprints should be as short as possible for each domain. And efforts should be taken to shorten
sprint length where possible.

Figure 11: Choose Appropriate Sprint Length for Domains

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Integration

Team

Dev Team

…

…

Product Team

Dev Team

Dev Team n

Dev Team

Dev Team

…

…

White Paper 19
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2.5 Provide PI Objectives and PI Guardrails instead of Fixed Deliveries

Traditional quality gates are often defined as a set of fixed deliveries to be delivered at a certain date. A lot of
effort is spent in advance, to define all requirements with a high level of detail for those deliveries. However,
as practice shows, those detailed plannings frequently become obsolete due to new insights or changed
requirements. Therefore, flexibility is needed wherever possible. There is no point in planning the details of a
concrete solution in advance, when practice shows, that those plans will frequently change. In consequence,
detailed plannings should be replaced by directional objectives. Detailed plannings should be made “just-in-
time” and by the teams themselves. They should be made as late as possible to minimize waste due to
unforeseen changes. They should be made timely enough to keep the backlog filled without interruptions.
Teams must be trusted to find the best solutions.

So, instead of providing a detailed list of deliveries for a specific milestone, it should be dynamically defined,
iteration by iteration, what is important in the next iteration to meet the high-level requirements.

Figure 12: Guardrails and PI Objectives

The Agile SE framework introduces two elements to achieve this: PI objectives and guardrails.

Guardrails are based on the underlying concept and product architecture. They define for the teams, which
decisions are fix and where flexibility is available. By defining wiggle room for decisions, they provide flexibility
to the teams to find the best solution, based on the latest knowledge, to fulfill the high-level requirements. They
avoid having to specify every detail in advance, but foster just-in time decisions, based on the latest, up-to-
date information.

PI objectives define, what should be achieved in the next program increment. They are based on the program-
backlog holding the features that product management and product architects have identified to be the most
important for the next iterations. They do not define in detail how each feature should be implemented. Finding
the detailed solution is task of the development teams.

3.2.6 Define PI Objectives Incrementally

Agile SE utilizes a program backlog, which holds so-called program backlog items (PBIs). Program backlog
items are features and architectural enablers required to achieve the high-level requirements for the product.
A program kanban manages the progress of those PBIs.

PI objectives are based on the PBIs in the program kanban. They define what should be achieved in the next
program increment. PI objectives are not static. Instead, they define the delta that should be achieved in the
next program increment, based on what has been achieved so far and adding up to the maturity of the product.
They are created incrementally by product management and product architects, right before the beginning of

Req.

Team

Product Team

Dev Team

Dev Team n

Dev Team

Dev Team

Program Kanban

Guardrails

PI Objectives

…

Concept &

Product Architecture

…

Δ Δ Δ Δ

White Paper 20
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

each program increment and considering what has been achieved so far as well as new insights and
requirement changes.

Figure 13: Define PI Objectives Incrementally

3.2.7 Align Requirements Frequently

Based on guardrails, PI objectives and program backlog and as part of the sprint-preparation, the agile
development teams break down the program backlog items into low-level tasks, that are maintained in the
team’s backlog. Often those tasks are documented in the form of “user stories”.

Defining user stories typically requires defining the low-level requirements for the features to be implemented.
To achieve this, agile developers closely collaborate with the requirements engineers.

Part of this collaboration are reviews of the intermediate sprint results: are there technical issues or
impediments? How could they be circumvented? The idea is to identify and discuss issues as soon as possible
and react quickly and appropriately.

Requirements engineers must prioritize the tasks in the team backlog. Therefore, they must closely align with
the product management. In case of conflicts, the product management has the final right to decide on priority.

The result is a continuously maintained and prioritized team backlog and quickly identified issues and
impediments.

This alignment between requirements engineers and agile development teams should be done at least once
per sprint, but it is good practice to aim for a higher frequency.

Figure 14: Align Requirements Frequently

Product Team

Δ Δ Δ ΔΔ

Program Kanban

PI Objectives

Guardrails

Product Concept &

Product Architecture

Req.

Team

Dev Team

Dev Team n

Dev Team

Dev Team

Req. Engineers

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

…

…Product

Owner
Scrum

Master

Agile Teams

Team

Architect

Developer

White Paper 21
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2.8 Foster Communication across the Teams

Agile approaches aim to frequently deliver integrated and valuable product increments. This requires breaking
up silos und collaboration across team boundaries.

At the beginning of each program increment, during the program increment planning, teams identify
collaboration needs and dependencies across teams and plan accordingly. However, this is not sufficient.
Continuous cross team communication during the program increment is essential to manage dependencies
and unforeseen impediments.

A good approach is to establish a so-called “cross-team alignment meeting”. This meeting provides a
platform to quickly arrange cross-team collaboration or remove impediments. It is held once per week. Each
team should send at least one representative to this meeting.

Depending on the number of teams the cross-team alignment meeting can be quite a large meeting. Therefore,
it must be kept short. A good approach is to conduct it like a Daily Stand-Up in Scrum: each team
representative shortly tells what the team is working on, what impediments the team is fighting with and where
the team needs help of others. He also listens to the reports of the others and shares the insights later with
his own team. If an issue cannot be resolved within two minutes, the moderator stops the discussion and
arranges a follow-up meeting with only the required participants. If a team has no impediments or
dependencies, it is fine if the representative just says: “nothing to report”.

Practice shows that such a meeting, even with more than 15 participants, can be finished within less than 45
minutes.

Figure 15: Cross Team Alignment

System

Team

Dev Team

Dev Team n

Dev Team

Integration

Team

Dev Team

…
Cross Team Alignment

weekly

White Paper 22
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2.9 Integrate Frequently

One of the main purposes of agile approaches is to shorten feedback loops. This requires frequent integration
of the deliveries of the different development teams. The goal is, to integrate at least once at the end of each
program increment. Where possible, integration should be done even more frequently, for example after each
sprint or in case of different sprint length (see chapter 3.2.3) at each synchronization point.

Figure 16: Frequent Integration - At least once per PI

Frequent integration can be a challenge – specifically when physical components are involved. There is no
one-size-fits-all approach to this. Projects must find their own approach how frequent integration can be
achieved. Potential approaches are:

• Modeling and simulation: simulating the interaction of mechanical, electronical and software
components based on models. (Chapter 3.5.2)

• 3D printed prototypes: quick creation of physical prototypes using 3D print. (Chapter)

• Modular, change friendly product architecture: designing the product in a modular way, so that
interfaces between components are minimized. E.g., an ECU capable to run multiple types of
software. (Chapter 3.5.4)

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Integration

Team

Dev Team

Program Kanban

Guardrails

PI Objectives

…

Concept &

Product Architecture

…

Δ Δ Δ Δ Δ

White Paper 23
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2.10 Define a High-Level Roadmap

Only few large real-world projects can be developed fully agile. Most large projects require a high-level
roadmap as guidance and milestones for coordination. In Agile SE a high-level roadmap is used to coordinate
the major deliveries. It is aligned to the top levels of the V-Model (Figure 17):

Figure 17: Top Level of V-Model Handled by a Roadmap

Typically, the phases of a roadmap span across multiple program increments:

Figure 18: Phases Span across Multiple Program Increments

3.2.11 Align Major Milestones with Program Increments

Ideally, major milestones on the roadmap are aligned with program increments. When setting up a project
according to the Agile SE framework and defining the overall roadmap, major milestones on the roadmap can
be often aligned with program increment boundaries. Typically, this means, that a milestone is shifted a couple
of weeks back or forth. A small adjustment of a PI length is also possible (see chapter 3.2.3).

Figure 19: Alignment of Major Milestones with Program Increments

There will be cases where a synchronization between program increments and major milestones is not
possible. In this case, non-aligned major milestones must be considered during PI planning. However, this can
seriously impact the benefits of an agile approach. In general, it is better to have program increments with
unequal length than having non-aligned major milestones.

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

Product Concept &

Product Architecture

Sponsors

R
e
q

u
ir

e
m

e
n

ts
-E

n
g

in
e

e
ri

n
g

 &

P
ro

d
u

c
t
A

rc
h
it
e

c
tu

re
D

e
v
e
lo

p
m

e
n
t

R
o

a
d

-

m
a

p
a

g
ile

tr
a
d
it
io

n
a
l

…
Developer

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Δ Δ Δ Δ Δ

Product Team

R
o
a
d

-m
a

p

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

Product Team

R
o

a
d

-m
a
p

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

White Paper 24
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2.12 Handle Roadmap and Concept with Appropriate Flexibility

Handling the roadmap with an appropriate level of flexibility is a way to balance between traditional project
management and agility.

Traditional organizations often define a roadmap and a concept and stick to it, only adjusting it, if it cannot be
avoided. They consider the roadmap a high-level project plan, that must be followed.

More agile organizations will review the roadmap and the concept after each program increment, evaluate
achievements and changes to the project context and adjust the roadmap accordingly. The roadmap provides
guidance and vision but stays dynamic. In this case the roadmap becomes a result of the sequence of PI
plannings.

Figure 20: Flexibility in Roadmap and Concept

3.2.13 Allow Coexistence of Traditional and Agile Teams

In some cases, certain deliveries must be managed by traditional project management. For example, due to
contract requirements with external partners or constraints in large organizations. While Agile SE does not
recommend this, Agile SE acknowledges that there are circumstances that cannot be avoided. Therefore,
Agile SE supports the coexistence of agile teams and teams, managed by traditional project management.

Figure 21: Traditional and Agile Teams

As far as possible, traditional teams should be involved in agile program level events like PI planning, PI review
or program-level retrospective. Specifically, the cross-team alignment event (see chapter 3.2.8) is very
valuable to keep the agile and traditional teams connected.

Product Team

Proj. Phase / major WP Project Phase / major Work Package Project Phase / major WP

adjust

Product Concept &

Product Architecture

adjust

Sponsors

Product

Architects

Product

Management

review review review review review

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Integration

Team

Dev Team

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

…

D
e
v
e
lo

p
m

e
n
t

a
g
ile

tr
a
d
it
io

n
a
l

…

Developer

White Paper 25
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.2.14 Synchronize after each Program Increment

When traditional and agile teams coexist, milestones of traditional teams should be aligned with program
increments of agile teams, to simplify integration of agile and traditional deliveries.

Figure 22: Synchronize after each Program Increment

There will be cases where a synchronization between program increments and traditional milestones is not
possible. In this case non-aligned milestones can be accepted and must be considered during PI planning as
intermediate PI objectives. However, too many non-aligned milestones can seriously impact the benefits of an
agile approach. Agile SE therefore recommends avoiding non-aligned milestones as far as possible.

3.2.15 Balance between Agile and Traditional Teams

Each organization and each project are different. There is no one-size-fits-all approach when it comes to
finding the right balance between traditional and agile approaches. Therefore, Agile SE provides flexibility to
adapt to a variety of different contexts found in different organizations and products.

One option to achieve flexibility, is to vary the number of agile and traditional teams. More agile organizations
will introduce more agile teams and only few (or none) traditional teams. More traditional organizations will
have more traditional teams than agile teams. Note, that there should be at least one agile team, otherwise,
Agile SE becomes a pure traditional organization that should be better managed traditionally.

Figure 23: Balance between Agile and Traditional Teams

System

Team

Dev Team

Dev Team n

Dev Team

Integration

Team

Dev Team

Sub-Project

Leads

Sub Project

Classic PM
.

Sub Project

Classic PM

…

D
e

v
e

lo
p

m
e

n
t

a
g

ile
tr

a
d

it
io

n
a

l

…

a
g
ile

tr
a
d
it
io

n
a
l

Team 2

Team x

Sub Project

Classic PM
.

Sub Project

Classic PM

Sub Project

Classic PM
.

Sub Project

Classic PM

Sub Project

Classic PM

Sub Project

Classic PM
.

System

Team

Team 3

Team y

Team 2

…

Integration

Team

Team x

…

Sub Project

Classic PM
.

Team 1

a
g
ile

traditional

More traditional

More agile

Could be zero

trad. teams

At least one agile team

White Paper 26
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.3 Organization

The Agile SE defines the following types of teams:

• Product team

• Requirement team

• Development team

• Integration team

• System team

It also utilizes the following roles:

• Sponsors

• Product architects

• Product management

• Program scrum master

• Requirement engineers

• Product owner

• Scrum master

• Developer

• Team architect

Those teams and roles are described in more detail in the subsequent chapters.

3.3.1 Product Team

The product team consists of product architects and product managers. Its main purpose is:

• Create a concept for the product.

• Define a high- and medium level product architecture.

• Define guardrails for the development teams based on that.

• Identify and prioritize features to be implemented.

• Fill the program backlog and maintain the program kanban

• Define and align PI objectives for each program increment

Figure 24: Product Team

3.3.2 Requirement Team

The main task of the requirement team is to break down the medium level requirements, defined in the program
Kanban, into low-level requirements, often in form of user stories. It therefore closely collaborates with the
agile development teams.

Figure 25: Requirements Team

Product Team

Program Kanban

Guardrails

PI Objectives

Concept &

Product Architecture
Product

Architects

Product

Management

Δ Δ Δ Δ Δ

Req.

Team
Req. Engineers

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

White Paper 27
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.3.3 Development Team

Large projects typically consist of multiple development teams. Those development teams are responsible for
implementing features and components of the product. This includes defining the low-level architecture and
requirements, needed to fulfill the medium level requirements. To do this, the development teams closely
collaborate with the requirements team.

Additional to the traditional Scrum roles of product manager, Scrum master and developer (Scrum.org,
2023), Agile SE suggests adding a team architect to each team.

Figure 26: Agile Development Teams

Ideally, development teams are organized cross-functional. That means, each team has all the capabilities
(mechanics, software, …) to deliver a certain set of features completely on their own. However, in many cases
fully cross-functional teams are not possible. Teams must collaborate to deliver a certain feature due to
dependencies on deliveries of other teams. Therefore, frequent cross-team alignment is required. The Agile
SE framework defines two types of cross-team alignment:

• The product increment planning event (chapter 3.4.1) and

• The cross-team alignment meeting (chapter 3.2.8).

3.3.4 Integration Team

One of the key principles of Agile SE is frequent integration (chapter 0). In many scaled agile frameworks (like
SAFe), integration is task of the agile development teams. However, integration can be a challenge with
complex products. This specifically is true when complex simulations (chapter 3.5.2) or sophisticated
technologies (rapid prototyping, chapter 3.5.3) are involved in integrations.

Therefore, Agile SE introduces an integration team, which supports the agile development teams in integrating
their deliveries into the overall product. Tasks of the integration team are:

• Supporting the teams integrating their deliveries into the digital twin.

• Maintenance of the simulation infrastructure needed for integration tests.

• Executing integration tests

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Dev Team Team

Architect

…

…

Developer

White Paper 28
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 27: Integration Team

The integration team is optional. If omitted, integration is responsibility of the development teams.

3.3.5 System Team

The system team provides supporting services to the project. Its core task is to maintain and operate the IT
infrastructure needed by the project, like Jira, Confluence, automatic build systems, automatic testing
infrastructure and such.

Figure 28: System Team

Some projects may decide to combine the integration- and system teams into one single team.

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Integration

Team

Dev Team Team

Architect

…

…

Developer

System

Team

Dev Team

Dev Team n

Dev Team

Product

Owner
Scrum

Master

Agile Teams

Integration

Team

Dev Team Team

Architect

…

…

Developer

White Paper 29
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.3.6 Sponsors

Sponsors are the initiators and funders of the project. They are responsible for the high-level objectives of the
project, the high-level product requirements, and the high-level roadmap. They assign value to the program
backlog items which allows product management to prioritize them properly. Sponsors have the final decision
when it comes to prioritization of features or changes to the high-level objectives of a project.

Figure 29: Sponsors

In real-world organizations more roles are typically involved in those tasks, like marketing and strategy. These
roles are not elaborated here any further, as they are highly specific to each organization and have only little
relevance for agility.

3.3.7 Product Architects

Product architects are responsible for the high and medium level architecture of the product. One of their core
tasks is to define a modular, change friendly architecture, which supports an agile development approach as
described in Agile SE (chapter 3.5.4). They closely collaborate with the product management, but also
collaborate with the sponsors, the requirements engineers, and the development teams.

Figure 30: Product architects

3.3.8 Product Management

Product management is responsible for maximizing the value achieved by the project. They define and
prioritize the features to be implemented. They are responsible for:

• Creating an overall concept for the product.

• Identifying and prioritizing features to be implemented.

• Filling the program backlog and maintaining the program kanban

• Defining PI objectives for each program increment and aligning them with the development teams

Product management closely collaborates with the product architects, but also collaborates with the sponsors,
the requirements engineers, and the development teams.

Figure 31: Product Management

3.3.9 Program Scrum Master

The program Scrum master is responsible for keeping the Agile SE development process running. He acts as
a servant leader and coach and closely collaborates with the Scrum masters of the agile development team.

Sponsors

Product

Architects
Product

Management

Product

Architects
Product

Management

White Paper 30
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 32: Program Scrum Master

The program Scrum master tasks are:

• Continuously improve the Agile SE development process

• Facilitate program-level events like
o Program increment planning
o Cross-team alignment meeting
o Program level retrospectives

• Coaching

This role is very similar to the role “release train engineer (RTE)” as defined in SAFe (Scaled Agile, 2023).

3.3.10 Requirement Engineers

Requirement engineers are members of the requirements team and are working on the tasks of the
requirements team. See chapter 3.3.2 for more details.

Figure 33: Requirements Engineers

3.3.11 Product Owner

Product owner is a classical role of Scrum. A product owner is responsible for maximizing the value delivered
by the team with respect to the high-level project goals. As the team’s main contact person for product
management and sponsors he connects the development team with business.

Together with the team and the requirement engineers he breaks down the features defined in the PI objectives
and the program kanban into manageable tasks (user-stories) for the team.

Figure 34: Product Owner

3.3.12 Scrum Master

Scrum master is another classical role of Scrum. A Scrum master acts as a servant leader to support the team
in performing and continuously improving its development tasks. His tasks are:

• Facilitating team events like dailies, sprint planning or retrospectives

• Supporting sprint execution

• Supporting PI execution and PI planning

• Fostering continuous improvement of the development process of his team.

Program

Scrum Master

Req. Engineers

Product

Owner

Scrum

Master

Agile Teams

Team

Architect

Developer

White Paper 31
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 35: Scrum Master

3.3.13 Developer

Developer is a classical role of Scrum. Developers are responsible for implementing features and components
of the product. This includes defining the low-level architecture and requirements, needed to fulfill the medium
level requirements together with the rest of the team.

Figure 36: Developer

3.3.14 Team Architect

The role of team architect is specific to Agile SE. A team architect is responsible for breaking down the medium-
level product architecture, provided by the product team, into a detailed, low-level architecture required by the
agile development teams to develop a concrete solution.

Figure 37: Team Architect

Depending on the teams’ focus and the level of architecture provided by the product architect, a team architect
is not always required. Therefore, the role of team architect is optional. If omitted, developers take over
responsibility for breaking down the medium-level product architecture into a concrete solution.

Product

Owner
Scrum

Master

Agile Teams

Team

Architect

Developer

Product

Owner
Scrum

Master

Agile Teams

Team

Architect

Developer

Product

Owner

Scrum

Master

Agile Teams

Team

Architect

Developer

White Paper 32
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.4 Events

3.4.1 Program Level Events

The main program level events are:

Event Participants Frequency Topics

Architecture
Sync

• Product architect

• Team architects

weekly • Product architecture

Product
Management
Sync

• Product management

• Product owners

weekly • Product roadmap

• Features

• Expected business value

• Prioritization

Scrum of
Scrums

• Program Scrum
master

• Scrum masters

weekly • Impediments

• Improvements to the Agile SE process

Program
Increment
Planning

• All development
teams

• Product management

• Product architect

• Sponsors

• Facilitator: program
Scrum master

before the
start of
each PI

• Product vision

• Architectural vision

• Features planned for the next PI

• PI objectives

• Dependencies between the teams

Cross Team
Alignment

• At least one
representative of each
team

weekly • Current tasks of the team

• Impediments

• Dependencies, where help is needed

PI Review • Product owner

• Product management

at the end
of each PI

• Achievements of the last PI

Program-Level
Retrospective

• Representatives of
each team

• Product management

• Product architect

• Scrum master

• Facilitator: program
Scrum master

after each
PI

• Review of the Agile SE process (what
went well, what didn’t go well?)

• Improvements to the Agile SE process

Table 1: Program Level Events

3.4.2 Team Level Events

Most team level events for the agile development teams are standard Scrum events. More details can be
found at Scrum.org (Scrum.org, 2023). They are:

Event Participants Frequency Topics

Requirements
Alignment-
Meeting

• Requirements
engineers

• Product owner

• Development team

Weekly Breaking down the medium level
requirements, of the program kanban, into
low-level requirements (often in form of user
stories).
(In Scrum this meeting is often called “backlog
refinement”)

Sprint
Planning

• Developers

• Product owner

• Scrum master

Before
each
sprint

Deciding on the backlog items to be
implemented in the next sprint

White Paper 33
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Daily Scrum • Developers

• Product owner

• Scrum master

Every day Tasks in progress, impediments

Sprint Review • Developers

• Scrum master

• Product owner

At the end
of each
sprint

Review the deliveries of each sprint

Retrospective • Developers

• Scrum master

• Product owner

After each
sprint

• Review of the team’s way of working

• Improvements to the team’s way of
working

Table 2: Team level events

White Paper 34
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

3.5 Enablers

3.5.1 Agile Culture

Establishing an agile culture is essential for Agil SE. Agility needs agile leaders – people who understand the
value of agile approaches and who are willing to foster and coach the organization in adopting an agile
mindset. The agile manifesto states: “Responding to change over following a plan” (Beck, et al., 2001), and
this is a key value for Agile SE.

Teams should work on the overall goal, not on individual goals. They should focus on value for the final product,
not on local optimizations. An open cross-team communication must be established. A good communication
culture, where “individuals and interactions are more important than processes and tools” (Beck, et al., 2001)
is essential for Agile SE. Transparency and openness is key to improve the whole system. Silos must be
avoided.

3.5.2 Modeling and Simulation

Agile SE postulates frequent integration in order to shorten feedback loops (chapter 0). However, frequent
integration can be a challenge – specifically when physical components are involved.

Working with a virtual product (“Digital Twin”) where possible can be an option. Integration is done virtually
instead of physically, allowing much shorter feedback cycles. This requires high quality and connected models
of the product and a solid simulation framework to do virtual integration tests. It is task of the integration team
(chapter 3.3.4) to support this.

3.5.3 Rapid Prototyping

When modeling and simulation are not suitable, rapid prototyping (e.g., 3D printing) is another option. In many
cases, prototypes created by rapid prototyping technologies can be integrated into the overall product for
testing purposes.

3.5.4 Modular, Change Friendly Product Architecture

High complexity can inhibit refactoring and prevent iterative learning and quick responses to change. A
modular, change friendly product architecture can reduce complexity. It is the responsibility of the product
architects to create a flexible, modular product architecture, that supports refactoring and change.

3.5.5 Test Automation

Frequent integration means, frequent and repeated testing. Since tests can be quite expensive, repeated tests
should be automated as far as possible.

For software highly automated build-, test- and deployment-chains are state-of-the-art. They should be
established wherever possible. They can provide quick feedback, ideally directly after each commit.

When modeling and simulation are used for integration tests and other tests, those tests can be often highly
automated. Automation servers (like Jenkins) can be utilized to frequently and automatically configure,
execute, and evaluate simulations of the checked-in models.

White Paper 35
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

4 Agile SE along the PDP

The Agile SE framework described so far assumes a steady state development process and project
organization. However, large projects often follow a standardized product development process (PDP) with
distinctive phases, each having different development focuses.

A typical product development process looks like this:

Figure 38: Example of a Product Development Process

Agile SE does not stay constant across those phases of the PDP. It must adapt to the different phases. Figure
39 shows a big-picture, how Agile SE can be applied to a typical PDP:

Figure 39: Agile SE Along the PDP

This big-picture is described in more detail in the subsequent chapters.

Product

Definition

Concept

development
definition & design phase

Product Development
development & production planning phase

Production Preparation
procurement & pilot series phase

Series Production

Sponsors

…

Product

Definition
Concept development

definition & design phase

Product Development
development & production planning phase

Production Preparation
procurement & pilot series phase

Series Production

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product Concept &

Product Architecture

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

…… … ……

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

Req.

Team

Production Team

System

Team

Dev Team

Dev Team n

Dev Team

Production Concept &

Production Architecture

Product

Owner
Scrum

Master

Agile Teams

Production

Architects

Production

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

P
ro

d
u
c
t

P
ro

d
u
c
ti
o
n
 S

y
s
te

m

Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Δ

White Paper 36
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

4.1 Key Principles

4.1.1 Set-Up Independent Agile SE Organizations

Development of the product and development of production are typically too different to be combined. They
also typically occur at different times along the PDP. So, it makes sense to set-up independent Agile SE
organizations for development of the product and for development of the production.

Figure 40: Independent Agile SE Organizations

In certain cases, even more Agile SE organizations can be feasible. If, for example, significant development
work is needed to prepare after-sales or support, it might be reasonable to setup another, independent Agile
SE organization for that.

Setting up independent Agile SE organizations is closely related to the concept of “Agile Release Trains
(ARTs)” in SAFe. (Scaled Agile, 2023)

4.1.2 Ramp-Up Agile SE Organizations

Agile SE organizations cannot start from zero to hundreds. They require a ramp-up phase which typically
aligns with a phase or a milestone on the roadmap. During ramp-up, product concepts and product architecture
are iteratively evolved by the product team. To speed up this process, the product team works in short sprints.
Once the Agile SE organization is set-up and the agile development teams start their development work, the
product team changes to program increments. Optionally it could also keep its pace.

Figure 41 shows the ramp-up phase of an Agile SE organization for the example “product development”.

Sponsors

…

Product

Definition
Concept development

definition & design phase

Product Development
development & production planning phase

Production Preparation
procurement & pilot series phase

Series Production

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product Concept &

Product Architecture

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

…… … ……

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

Req.

Team

Production Team

System

Team

Dev Team

Dev Team n

Dev Team

Production Concept &

Production Architecture

Product

Owner
Scrum

Master

Agile Teams

Production

Architects

Production

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

P
ro

d
u
c
t

P
ro

d
u
c
ti
o
n
 S

y
s
te

m

Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Δ

Product Development

Production System Development

White Paper 37
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 41: Ramp-Up Phase of an Agile SE Organization

Ramp-up for production development is analogous. Instead of a product team a dedicated production team
starts evolving the production concept and the production architecture iteratively in sprints.

4.1.3 Full Working Mode of Agile SE Organizations

The full working mode of an Agile SE organization is described in detail in chapter 4.1.3. During this phase the
product concept and product architecture evolving much slower than during the ramp-up phase.

Figure 42: Full Working Mode of an Agile SE Organization

4.1.4 Ramp-Down of Agile SE Organizations

At some point in time, development of the product of an Agile SE organization is mainly done. Other
organizations take over. Typically, there is still some work left, like defect-fixing or late change requests, but
the amount of work continuously decreases.

During this phase the Agile SE organization phases out: teams are reduced, suspended, or reorganized into
fewer teams. At the end of a ramp-down only a few small teams remain, who are quite often mainly involved
in support.

Product

Definition
Concept development

definition & design phase

Product Development
development & production planning phase

Req.

Team

Product Team

Dev Team

Dev Team

Product Concept &

Product Architecture …… … ……

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Sponsors

…

Product

Definition
Concept development

definition & design phase

Product Development
development & production planning phase

Production Preparation
procurement & pilot series phase

Series Production

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product Concept &

Product Architecture

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

…… … ……

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

Req.

Team

Production Team

System

Team

Dev Team

Dev Team n

Dev Team

Production Concept &

Production Architecture

Product

Owner
Scrum

Master

Agile Teams

Production

Architects

Production

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

P
ro

d
u
c
t

P
ro

d
u
c
ti
o
n
 S

y
s
te

m

Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Δ

White Paper 38
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Figure 43: Ramp Down of an Agile SE Organization

4.2 Agile SE Along the Phases

Figure 44: Product Development Process

During the product definition phase marketing, sponsors, strategists, and others decide if a new product
development should be launched. In this phase no Agile SE organization exists.

During the concept development phase, the Agile SE organization for product development is being
ramped-up. The Agile SE organization for production system development typically does not exist during this
phase.

During the product development phase, the Agile SE organization for product development is in full
operation mode as described in chapter 4.1.3. At some point of time during this phase, typically at a milestone
like “Design Freeze”, the Agile SE organization for production system development starts being ramped up.

During the production preparation phase, the Agile SE organization for production system development
is in full operation mode. The Agile SE organization for product development still exists to support defect-
fixing or late product changes, but the amount of work reduces over time. It is ramped down.

During series production standard production organizations like factory sites take over. The Agile SE
organization for production system development still exists to hand over production and provide support,
but the amount of work reduces over time. It is ramped down.

Sponsors

…

Product

Definition
Concept development

definition & design phase

Product Development
development & production planning phase

Production Preparation
procurement & pilot series phase

Series Production

Req.

Team

Product Team

System

Team

Dev Team

Dev Team n

Dev Team

Product Concept &

Product Architecture

Product

Owner
Scrum

Master

Agile Teams

Product

Architects

Product

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

…… … ……

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

Req.

Team

Production Team

System

Team

Dev Team

Dev Team n

Dev Team

Production Concept &

Production Architecture

Product

Owner
Scrum

Master

Agile Teams

Production

Architects

Production

Management

Integration

Team

Dev Team

Program

Scrum Master

Req. Engineers

Sub-Project

Leads

Team

Architect

Sub Project

Classic PM
.

Sub Project

Classic PM

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Program Kanban

Guardrails

PI Objectives

Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Team

Backlogs

…

P
ro

d
u

c
t

P
ro

d
u

c
ti
o

n
 S

y
s
te

m

Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ

Re-

view Req. Req. Req.

Re-

view

Re-

view

Re-

view Req..

Δ
Product

Definition

Concept

development
definition & design phase

Product Development
development & production planning phase

Production Preparation
procurement & pilot series phase

Series Production

White Paper 39
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

5 Comparison with SAFe

Agile SE is inspired by SAFe (Scaled Agile, 2023), but it is not SAFe. There are many similarities with SAFe,
but also some distinctions.

Table 3 shows the similarities between Agile SE and SAFe 6. Table 4 shows the differences.

Agile SE SAFe

Roadmap Roadmap

Program Increment (PI) Planning Interval (PI)

Program Increment Planning (PI) PI Planning (PI)

PI Review Inspect & Adapt (I&A)

Sprint Iteration

Agile SE Organization Agile Release Trains (ART)

Product Team Value Stream Management

Requirements-Engineering &
Product Architecture

Agile Product Delivery

Agile Development Team and Technical Agility

Product Management Product Management

Product Architects System Architects

Program Scrum Master Release Train Engineer (RTE)

Product Owner Product Owner

Scrum Master Scrum Master

Developer Agile Team Member

System Team System Team

Program Kanban ART Backlog

Team Backlog Team Backlog

Guardrails Guardrails

Product Concept Vision

Agile Culture Lean Agile Mindset

Roadmap Roadmap

Table 3: Similarities between Agile SE and SAFe 6

Aspect Agile SE SAFe

Portfolio Management not covered covered

Enterprise Solution Delivery not covered covered

Alignment with V-Model in strong focus not covered

Value Management, Business Value not covered in strong focus

Requirements Team dedicated team
covered by product
management and product
owners

White Paper 40
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

Integration Team dedicated team
covered by development teams
or system team

Team Kanban not covered optional

PI Objectives
defined by product team as
input for PI planning (goal)

defined by development teams
as outcome of PI planning
(commitment)

DevOps not covered covered

Table 4: Differences between Agile SE and SAFe 6

White Paper 41
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

6 Summary

Agile SE is a framework to combine agility and systems engineering.

Agile SE utilizes nested iterations: the higher levels of the V-Model are managed by a high-level roadmap, the
medium levels are managed by long “program increments” and the low levels are managed by short “sprints”.
Different teams work on the different levels. Agile development teams closely collaborate with product- and
requirement teams to bridge between the lower and medium levels of the “V”. To adapt to constraints of specific
technical domains, Agile SE allows sprint lengths of a multitude of a basic sprint length. In any case, teams
and iterations should stay in cadence.

PI objectives and guardrails provide flexibility to the teams to find the detailed solution on their own, while still
providing enough control to ensure, that the final product stays on track. This unleashes the creativity of the
developers and typically leads to better results.

Integration is done frequently to shorten feedback loops. This increases agility and allows quick responses on
the unavoidable unforeseen. Modeling and simulation, 3D printing, and test automation are enablers for short
feedback loops. Artificial intelligence can further support this.

A modular, change friendly product architecture is required to reduce complexity and foster change.

A high-level roadmap provides guidance and a vision to keep the product development on track. Mature agile
organizations will adjust the roadmap based on the outcomes of the program increments. Milestones should
ideally be aligned with program increment boundaries, but Agile SE provides options to handle cases, where
this is not feasible.

Agile SE supports real-world situations, by explaining how teams, managed by traditional project management,
can be integrated. It is flexible enough to adapt to different contexts in different projects or organizations. Agile
SE can be adjusted from a full agile organization to a quite traditional organization managed by traditional
project management.

Agile SE changes over time during a typical product development process (PDP). In many projects multiple
Agile SE organizations are required. Typically, one for product development and one for production
development. Each Agile SE organization has a ramp-up phase, a full working mode phase and a ramp-down
phase. Those phases can be aligned to the milestones of a PDP.

Agile SE is closely related to SAFe but is not SAFe.

White Paper 42
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

7 Outlook

This whitepaper is partly based on insights gained from interviews held with agile and systems engineering
experts from the industrial sector (see chapter 2). Due to the small number of interview partners, those
interviews were not representative. Further studies should conduct additional interviews to gain broader
feedback.

The Agile SE approach described in this white paper is mainly focused on the industrial sector. While this
doesn’t mean, that the described Agile SE approach is unsuitable for other sectors, further studies should
investigate which adaptions are needed for other sectors, such as health care, finance or construction.

White Paper 43
© prostep ivip Association – All rights reserved

 Systems Engineering and Agility prostep ivip

How to combine Agility with Systems Engineering White Paper

8 References

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, W., . . . Thomas, D.
(2001). Agile Manifesto. Retrieved from https://agilemanifesto.org/

Scaled Agile. (2023, Aug 2). Agile Release Train. Retrieved from SAFe 6.0:
https://scaledagileframework.com/agile-release-train

Scaled Agile. (2023, Aug. 01). Release Train Engineer. Retrieved from SAFe 6.0:
https://scaledagileframework.com/release-train-engineer/

Scaled Agile. (2023, July 28). Scaled Agile Framework. Retrieved from SAFe 6.0:
https://scaledagileframework.com/

Scrum.org. (2023, 07 31). What is Scrum. Retrieved from Scrum.org: https://www.scrum.org/learning-
series/what-is-scrum

2 MBSE 3D Foundation 2020-1 / V 1.0

prostep ivip association
Dolivostraße 11
64293 Darmstadt
Germany

Phone +49-6151-9287336
Fax +49-6151-9287326

psev@prostep.com
www.prostep.org

ISBN 978-3-948988-35-7
Version 1.0, 2024-3

