
1 TITEL DES KAPITELS

White Paper
Titel der Publikation
Version 1.0

Titel der Publikation

ReqIF Implementor Forum

prostep ivip Implementation Guideline

ReqIF Implementor Forum
ReqIF Implementation Guideline referring to OMG ReqIF1.2
Version 1.10, January 2024

© prostep ivip Association – All rights reserved ii

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Abstract

This specification is an additional, informal document concerning the OMG ReqIF1.2 standard.

It answers implementation specific questions that have intentionally been left out of the OMG ReqIF standard
because they do not directly concern the exchange format but may be relevant for tool implementations.

© prostep ivip Association – All rights reserved iii

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Disclaimer

This document is a prostep ivip Documentation (PSI Documentation), referring to OMG ReqIF1.2. Those are
freely available for all prostep ivip e.V. members. Anyone using these recommendations is responsible for
ensuring that they are used correctly.

This PSI Documentation gives due consideration to the prevailing state-of-the-art at the time of publication.
Anyone using PSI Documentations must assume responsibility for his or her actions and acts at their own risk.
The prostep ivip Association and the parties involved in drawing up the PSI Documentation assume no liability
whatsoever.

We request that anyone encountering an error or the possibility of an incorrect interpretation when using the
PSI Documentations contact the prostep ivip Association (psi-issues@prostep.com) immediately so that any
errors can be rectified.

Copyright

I. All rights on this PSI Documentation, in particular the copyright rights of use and sale such as the right
to duplicate, distribute or publish the Documentation remain exclusively with the prostep ivip
Association and its members.

II. The PSI Documentation may be duplicated and distributed unchanged, for instance for use in the
context of creating software or services.

III. It is not permitted to change or edit this PSI Documentation.

IV. A suitable notice indicating the copyright owner and the restrictions on use must always appear.

© prostep ivip Association – All rights reserved iv

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Contents

1 Introduction ... 7

1.1 Motivation and target of this specification .. 7

1.2 How to read this document .. 7

2 Recommendations .. 8

2.1 Compliance with the ReqIF standard ... 8

2.2 Naming conventions for ReqIF file extensions .. 8

2.3 Character Encoding of ReqIF XML files .. 8

2.4 Naming conventions for system attributes ... 8

2.5 How to handle read-only, automatically set system attributes .. 12

2.5.1 Problem statement .. 12

2.5.2 Rules ... 13

2.5.3 Typical exchange scenario .. 13

2.5.4 Different exchange scenario ... 14

2.6 How to interchange DOORS table information .. 14

2.6.1 Mapping the root node of the DOORS table ... 15

2.6.2 Mapping the rows and colums of the DOORS table ... 15

2.6.3 Summary of the example mapping ... 15

2.7 How to handle Embedded Objects .. 16

2.7.1 Problem Statement ... 16

2.7.2 General Considerations .. 17

2.7.3 Rules ... 17

2.8 Formatting conventions.. 18

2.9 How to represent a conversation identifier .. 19

2.10 How to represent links from/to external elements ... 20

2.11 How to deal with RelationGroup elements .. 21

2.12 How to deal with RelationGroupType elements .. 21

2.13 How to specify a maximum length for string datatypes, when the requirements authoring tool does not
limit string length .. 22

2.14 Attribute handling in database vs. document oriented requirements authoring tools 22

2.15 How to deal with missing attribute values and default values ... 23

2.16 How to reimport a previously imported specification when requirements were deleted 23

2.17 Values of the accuracy attribute of DatatypeDefinitionReal .. 23

2.18 How to represent objects that are reused in Requirements Authoring Tools in ReqIF 24

2.19 Only one attribute value per attribute ... 24

2.20 How to simplify XHTML-content .. 24

2.21 How to deal with access policy data for SpecHierarchy elements .. 27

2.22 How to resolve conflicting isEditable values for AttributeDefinition-Enumeration 28

2.23 How to use xsi:schemaLocation in ReqIF XML documents .. 28

3 Annex.. 29

© prostep ivip Association – All rights reserved v

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

3.1 Links to ReqIF1.2 example files ... 29

3.2 Differences to prior RIF/ReqIF versions .. 29

3.2.1 Differences from OMG ReqIF1.0.1 to OMG ReqIF1.2 .. 29

3.2.2 Differences from RIF1.2 to ReqIF1.2 .. 29

3.2.3 Differences from RIF1.1a to ReqIF1.2 .. 31

3.3 XML tags used in XHTML .. 34

List of Figures

Figure 1: Naming conventions for system attributes 1/2 .. 10

Figure 2: Naming conventions for system attributes 2/2 .. 11

Figure 3: Typical exchange scenario for automatically set system attributes .. 13

Figure 4: Screenshot of DOORS table (root node) .. 15

Figure 5: Screenshot of DOORS table (rows and columns) .. 15

Figure 6: Issues concerning embedded objects ... 17

Figure 7: RIF1.1a “identifier” may be stored in "identifier" attribute of “AlternativeID” instance 31

© prostep ivip Association – All rights reserved vi

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Abbreviations and Definitions

ReqIF: Requirements Interchange Format

ReqIF tool: A tool that exports ReqIF compliant XML documents
from a source requirements authoring tool and/or
imports them in a target requirements authoring tool.

Requirements authoring tool: A tool used that is capable of creating and modifying
requirements. In the context of this specification, this
need not be a tool marketed as “Requirements
Management Tool”.

 7
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

1 Introduction

1.1 Motivation and target of this specification

This specification is an additional, informal document concerning the OMG ReqIF1.2 standard.

It is intended to be read by vendors who implement a tool for the OMG ReqIF1.2 standard.

The purpose of this specification is to provide recommendations on how to solve specific implementation
related problems that have intentionally not been dealt with in the OMG ReqIF1.2 standard because they do
not directly concern the exchange format but the handling of ReqIF XML documents by tools.

1.2 How to read this document

Each recommendation within this document is addressed in a sub-section of chapter 2.

 8
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2 Recommendations

The following sections describe non-normative recommendations for tools implementing the ReqIF standard.
Implementing these recommendations is not required for standard compliance. However, adhering to the
recommendations simplifies implementation and fosters interoperability to existing implementations.

2.1 Compliance with the ReqIF standard

A ReqIF file may only contain ReqIF content that is valid against the OMG ReqIF XSD schema and has defined
semantics in the ReqIF standard. Extensions must be placed in the tool extensions section of the ReqIF file.

See clause 2, “Conformance” of the ReqIF standard for normative information on standard compliance.

2.2 Naming conventions for ReqIF file extensions

The following file extensions should be used for ReqIF files:

• .reqif for a single ReqIF XML file (instead of the usual .xml extension)

• .reqifz for ZIP archives containing ReqIF files and additional files, e.g. images (instead of the usual
.zip extension). Do not use the.zip file extension for these files.

An example ReqIF XML file could therefore be called example1.reqif, an example ReqIF ZIP archive could
be called example2.reqifz.

For.reqifz archives, ReqIF tools must use the standard ZIP data format, which is based on the Deflate
Compression. ReqIF tools are not allowed to use some proprietary format of tools like 7-Zip.

Using these file extensions simplifies the task of locating ReqIF files in a file system tree, which is specifically
important for ReqIF importing tools. ReqIF tools should nevertheless be able to process files with the usual
extensions .xml and .zip.

2.3 Character Encoding of ReqIF XML files

In order to increase interoperability between ReqIF tools, the following conventions should be followed when
exporting ReqIF XML files:

1. A ReqIF exporting tool should always use UTF-8 as the character encoding in ReqIF files. That means
that the following line should be included as first line in every ReqIF file:
<?xml version="1.0" encoding="UTF-8"?>

2. A ReqIF exporting tool should represent all special characters either by their proper encoding in UTF-
8, or by their UTF-8 reference.

As an example for 2., the umlaut ä should either be represented

• in binary form (not as text): 11000011 10100100

• or as a UTF-8 reference (as text in the ReqIF file): ä

2.4 Naming conventions for system attributes

Different requirements authoring tools may have different internal data models to store the requirements data.
To exchange requirements between tools with different data models, a mapping between the tools’ data
models need to be established. While it is possible to establish a mapping on a tool by tool basis, this task
becomes increasingly difficult when more and more additional tools are considered.

This chapter proposes conventions to provide a single mapping for common elements of requirements data
models. Such a mapping – when implemented by several ReqIF tools - eliminates the need to map on a tool
by tool basis. Note that however, no ReqIF tool can rely on another tool actually producing attributes as defined
by this convention, as the conventions are non-normative.

The term “system attribute” is used here for any attribute of a requirement, specification or relation between
requirements that are provided “out-of-the-box” by a requirements authoring tool, that is: the attribute does not
need to be created by the user of that requirements authoring tool, but is managed by the tool itself.

https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951

 9
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

The following table gives an overview of system attributes of commercial tools that are currently on the
market. The table explains how to map these attributes to ReqIF. Note that the attribute names defined by
this convention MUST be exported case-sensitive, but a ReqIF importing tool SHOULD be forgiving when
the attribute name is not case-sensitive.

 10
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Figure 1: Naming conventions for system attributes 1/2

SpecObject Absolute Number Item ID Code
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.ForeignID SpecObject::AttributeValueString::theValue

SpecObject Created By Created By Author
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.ForeignCreatedBy SpecObject::AttributeValueString::theValue

SpecObject Created On Created Date
Element

Creation Date

Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionDate::longName := ReqIF.ForeignCreatedOn SpecObject::AttributeValueDate::theValue

SpecObject Created Thru
n/a n/a

Create ReqIF

AttributeDefinition/Value

SpecObject::AttributeDefinitionEnumeration::longName :=

ReqIF.ForeignCreatedThru
SpecObject::AttributeValueEnumeration::theValue

SpecObject Last Modified By Modified By
Active Version

Author

Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.ForeignModifiedBy SpecObject::AttributeValueString::theValue

SpecObject Last Modified On Modified Date

Last

Modification

Date

Use existing ReqIF concept

Use SpecObject::lastChange attribute

Fill value in SpecObject::lastChange

SpecObject Object Heading n/a
n/a

Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionXHTML::longName := ReqIF.ChapterName SpecObject::AttributeValueXHTML::theValue

SpecObject Object Number n/a
n/a

Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.ChapterNumber SpecObject::AttributeValueString::theValue

SpecObject Object Short Text n/a Name
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionXHTML::longName := ReqIF.Name SpecObject::AttributeValueXHTML::theValue

SpecObject Object Text Text Description
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionXHTML::longName := ReqIF.Text SpecObject::AttributeValueXHTML::theValue

SpecObject n/a n/a n/a

Create ReqIF

AttributeDefinition/Value

(if the user wants to explicitly

transmit deleted objects).

SpecObject::AttributeDefinitionBoolean::longName := ReqIF.ForeignDeleted

(If the datatype of the definition has a default value, it should be false.

If the datatype has no default value, and the attribute is missing

for a certain SpecObject, it means false.

The importing ReqIF tool must import all objects as they are, including the attribute

ReqIF.ForeignDeleted)

SpecObject::AttributeValueBoolean::theValue

SpecObject n/a
Text

Attachments
n/a

Do not export as ReqIF attribute,

but reference the text attachment

from the ReqIF.Text attribute to

which they are attached.

n/a n/a

SpecObject n/a n/a
Associated

Files

Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.AssociatedFiles

SpecObject::AttributeValueString::theValue

(If there is more than one associated file, separate file URLs by

whitespace)

SpecObject n/a Category n/a
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionEnumeration::longName := ReqIF.Category SpecObject::AttributeValueEnumeration::theValue

SpecObject n/a n/a Active Version
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.ForeignRevision SpecObject::AttributeValueString::theValue

SpecObject n/a n/a
Change

Description

Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.ChangeDescription SpecObject::AttributeValueString::theValue

SpecObject n/a n/a Fit-Criteria
Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionString::longName := ReqIF.FitCriteria SpecObject::AttributeValueString::theValue

SpecObject n/a n/a Discussion n/a n/a n/a

SpecObject
TBD TBD TBD Create ReqIF

AttributeDefinition/Value
SpecObject::AttributeDefinitionXHTML::longName := ReqIF.Description SpecObject::AttributeValueXHTML::theValue

IBM DOORS

System Attribute

Name

ReqIF

Attribute level

Visure IRQA

System Attribute

Name

ReqIF concept to store the Attribute Value

during export (Step Export1)

ReqIF exporter behaviour first

export of specification (Step

Export1)

PTC Integrity

System Attribute

Name

ReqIF Attribute Name Representation during export (Step Export1)

 11
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Figure 2: Naming conventions for system attributes 2/2

Specification Name Document Short TitleName
Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionXHTML::longName := ReqIF.Name Specification::AttributeValueXHTML::theValue

Specification Prefix
n/a n/a

Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionString::longName := ReqIF.Prefix Specification::AttributeValueString::theValue

Specification Created By Created By Author
Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionString::longName := ReqIF.ForeignCreatedBy Specification::AttributeValueString::theValue

Specification Created On Created Date Creation Date
Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionDate::longName := ReqIF.ForeignCreatedOn Specification::AttributeValueDate::theValue

Specification Last Modified By Modified By
Active Version

Author

Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionString::longName := ReqIF.ForeignModifiedBy Specification::AttributeValueString::theValue

Specification Last Modified On Modified Date
Active Version

Date
Use existing ReqIF concept

UseSpecification::lastChange attribute
Fill value in Specification::lastChange

Specification
n/a State n/a

Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionEnumeration::longName := ReqIF.ForeignState Specification::AttributeValueEnumeration::theValue

Specification
n/a Project n/a

Create ReqIF

AttributeDefinition/Value
Specification:AttributeDefinitionString::longName := ReqIF.Project Specification::AttributeValueString::theValue

Specification
n/a

Document ID

n/a

Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionString::longName := ReqIF.ForeignID Specification::AttributeValueString::theValue

Specification
Description

Shared Text Description
Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionXHTML::longName := ReqIF.Description Specification::AttributeValueXHTML::theValue

Specification n/a n/a Active Version
Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionString::longName := ReqIF.ForeignRevision Specification::AttributeValueString::theValue

Specification n/a n/a
Change

Description

Create ReqIF

AttributeDefinition/Value
Specification::AttributeDefinitionString::longName := ReqIF.ChangeDescription Specification::AttributeValueString::theValue

Specification n/a n/a TBD
Create ReqIF

AttributeDefinition/Value

Specification::AttributeDefinitionString::longName := ReqIF.ForeignBaseline

(this attribute is to inform human users, not to be processed by machines. It defaults to the

tool internal "version" of the baseline. When exporting, the exporting ReqIF tool must allow

the user to edit the value.)

Specification::AttributeValueString::theValue

SpecRelation TBD TBD TBD
Create ReqIF

AttributeDefinition/Value
SpecRelation::AttributeDefinitionXHTML::longName := ReqIF.Name SpecRelation::AttributeValueXHTML::theValue

SpecRelation TBD TBD TBD
Create ReqIF

AttributeDefinition/Value
SpecRelation::AttributeDefinitionString::longName := ReqIF.ForeignCreatedBy SpecRelation::AttributeValueString::theValue

SpecRelation TBD TBD TBD
Create ReqIF

AttributeDefinition/Value
SpecRelation::AttributeDefinitionDate::longName := ReqIF.ForeignCreatedOn SpecRelation::AttributeValueDate::theValue

SpecRelation TBD TBD TBD
Create ReqIF

AttributeDefinition/Value
SpecRelation::AttributeDefinitionString::longName := ReqIF.ForeignModifiedBy SpecRelation::AttributeValueString::theValue

SpecRelation TBD TBD TBD Use existing ReqIF concept UseSpecRelation::lastChange attribute Fill value in SpecRelation::lastChange

SpecRelation TBD TBD TBD
Create ReqIF

AttributeDefinition/Value
SpecRelation::AttributeDefinitionString::longName := ReqIF.ForeignID SpecRelation::AttributeValueString::theValue

SpecRelation TBD TBD TBD
Create ReqIF

AttributeDefinition/Value
SpecRelation::AttributeDefinitionXHTML::longName := ReqIF.Description SpecRelation::AttributeValueXHTML::theValue

 12
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

As an example of how to read that table, consider its first line:

ReqIF
Attribute

level

IBM
DOORS
System
Attribute
Name

PTC
Integrity
System
Attribute
Name

Visure
IRQA

System
Attribute
Name

ReqIF exporter
behaviour first
export of
specification

ReqIF Attribute Name Representation during
export

ReqIF concept to store
the Attribute Value
during export

SpecObject Absolute
Number

Item ID Code Create ReqIF
AttributeDefinition/
Value

SpecObject::
AttributeDefinitionString::
longName := ReqIF.ForeignID

SpecObject::
AttributeValueString::
theValue

The green color indicates the representation in ReqIF. The yellow, blue and red colors indicate representations
in requirements authoring tools.

The line reads as follows (from left to right):

SpecObject The convention defined in this line applies to SpecObject attributes (that is: to
attributes of requirements).

Absolute Number In the requirements authoring tool IBM DOORS there is a system attribute
called Absolute Number, to which the convention in this line applies.

Item ID In the requirements authoring tool PTC Integrity there is a system attribute
called Item ID, to which the convention in this line applies.

Code In the requirements authoring tool Visure IRQA there is a system attribute
called Code, to which the convention in this line applies.

Create ReqIF
AttributeDefinition/Value

In order to map any of the above requirements authoring tool attributes to
ReqIF, create an AttributeDefinition instance and an AtttributeValue instance
in ReqIF (when exporting a ReqIF file).

SpecObject::
AttributeDefinitionString::
longName:=
ReqIF.ForeignID

The name of the created ReqIF AttributeDefinitionString instance is
ReqIF.ForeignID.

To do this in ReqIF, set the longName of the AttributeDefinitionString instance
to the text ReqIF.ForeignID.

SpecObject::
AttributeValueString::
theValue

The value of the attribute is stored in theValue attribute of the
AttributeValueString instance.

To summarize the line: the system attributes Absolute Number, Item ID and Code each represent the same
concept, an identifier. Therefore, each of them is mapped to a string attribute with the same name in ReqIF.
The name of that ReqIF attribute is ReqIF.ForeignID.

2.5 How to handle read-only, automatically set system attributes

2.5.1 Problem statement

It is relatively easy to import and export a system attribute that is not read-only in a requirements authoring
tool: when importing, the value from the ReqIF XML document is stored in a requirements authoring tool
attribute (e.g. the requirement‘s text), when exporting, this attribute’s value is stored in the ReqIF XML
document.

However, there are certain system attributes that are read-only and automatically set by the requirements
authoring tool when creating a requirement, a typical example is the creator of a requirement.

When importing a ReqIF XML document, these attributes’ values from the ReqIF XML document may get lost.
For example, instead of importing the original creator of a requirement from the ReqIF XML document, the
name of the importing person is automatically set in the requirements authoring tool.

 13
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2.5.2 Rules

The following rules should be applied in case there are automatically-set, read-only system attributes as
described above and the resulting problem needs to be avoided.

R1. For each requirements authoring tool attribute, a ReqIF exporting tool should allow the user to choose
whether to export the attribute or not, no matter if the attribute is a writable system attribute, a read-only
system attribute or a user defined attribute.

R2. If the user chooses to export an automatically set, read-only system attribute, the attribute name in the
ReqIF XML document should have the name as defined in clause 2.4, “Naming conventions for system
attributes”. For example, the attribute for the creator of a requirement should be called
ReqIF.ForeignCreatedBy in the XML document.

R3. Names of user defined attributes should always be represented in ReqIF XML documents and
requirements authoring tools without a ReqIF. prefix.

R4. When importing a system attribute that has been exported according to R2 into a requirements authoring
tool for the first time, the ReqIF importing tool should create a new user attribute in the requirements
authoring tool. The name of this attribute is obtained by stripping the ReqIF. prefix.
Example: A ReqIF.ForeignCreatedBy attribute in the ReqIF XML document should be called
ForeignCreatedBy in the requirements authoring tool after import.

R5. When an attribute created due to R4 is exported again, R3 applies. For example: If the ForeignCreatedBy
attribute in the R4 example is exported again, it has to be called ForeignCreatedBy in the ReqIF XML
document, NOT ReqIF.ForeignCreatedBy. Note that exporting attributes again like this rarely makes
sense, especially if only 2 partners exchange requirements, and it may cause conflicts, as described at
the end of clause 2.5.3.

2.5.3 Typical exchange scenario

To explain the rules, Figure 3 depicts a typical exchange scenario of one requirement (Requirement X)
between two partners, one OEM and one supplier. In the scenario, Requirement X has 2 attributes: Status is
a user defined attribute and Created By is a read-only, automatically set system attribute.

Figure 3: Typical exchange scenario for automatically set system attributes

What follows is an explanation of the 4 steps of the typical exchange scenario. At the end of the sentence,
you’ll find the applied rule number in brackets.

Step1 Step2

Step3

Step4

 14
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Step1. Requirement X and its 2 attributes are exported from the OEM’s authoring tool (R1). The Created By
attribute is exported named ReqIF.ForeignCreatedBy in the ReqIF XML document (R2). The name
of the Status attribute stays Status in the ReqIF XML document (R3).

Step2. Requirement X and its 2 attributes are imported to the supplier’s authoring tool.
The ReqIF importing tool creates a user attribute ForeignCreatedBy in the authoring tool and stores
the value of the ReqIF.ForeignCreatedBy attribute (Jane Q. Public) from the XML document in it
(R4). The ReqIF importing tool stores the value of the Status attribute from the XML document in a
newly created Status user attribute (R3).

The Created By attribute in the supplier’s authoring tool is a read-only, automatically set system
attribute. Its value is not affected by the import. Instead, the supplier’s authoring tool automatically sets
its value to the name of the importing person - in the scenario that name is Max Mustermann - during
creation of Requirement X.

Step3. Requirement X and two of its attributes are exported from the supplier’s authoring tool (R1): the
Created By attribute and the Status attribute. The same rules as in Step1 apply, that is: the Created
By attribute is exported named ReqIF.ForeignCreatedBy, the Status attribute is exported named
Status. Note that the ForeignCreatedBy attribute is not exported from the supplier’s authoring tool in
this scenario.

Step4. Requirement X and its 2 attributes are re-imported into the OEM’s authoring tool. This step is
analogous to Step2, only the authoring tool, the attribute values and the name of the importing person
is different (Jane Q. Public).

Note that each identifier of ReqIF Identifiable elements MUST be immutable during consecutive exports and
imports, as required by the standard. That means: in the AttributeDefinitionString elements for the attribute
called ReqIF.ForeignCreatedBy, the identifier MUST be the same after Step1 and Step3, as they represent
the same system attribute.

2.5.4 Different exchange scenario

Note also that rule R5 has not been applied in the typical exchange scenario, because in Step3, the
ForeignCreatedBy attribute has not been exported from the supplier’s authoring tool.

In a different scenario, the ForeignCreatedBy attribute might have been exported as well, named
ForeignCreatedBy in the ReqIF XML document (R5). In that different scenario, the ReqIF XML document
would contain two attributes for the creator, one called ReqIF.ForeignCreatedBy (with value Max
Mustermann) as in the typical exchange scenario, one called ForeignCreatedBy (with value Jane Q. Public),
both having different identifiers. It would be the responsibility of the next ReqIF importing tool in line to resolve
the conflict between those 2 values.

2.6 How to interchange DOORS table information

IBM Rational DOORS allows the user to create tables as part of requirements’ content. Up to RIF1.2, there
has been no defined way how to exchange DOORS tables.

ReqIF has an attribute isTableInternal in the SpecHierarchy information type. This attribute must be set to
true for all SpecHierarchy elements that are related to SpecObjects that are parts of the DOORS table. This
includes the root node of the DOORS table.

Additionally, there needs to be an alternative XHTML representation of the table’s content to allow tools that
don’t support requirement internal tables to easily process the ReqIF XML document.

The following sub clauses describe a concrete example of the mapping between DOORS tables and ReqIF.

 15
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2.6.1 Mapping the root node of the DOORS table

Figure 4: Screenshot of DOORS table (root node)

Each DOORS >> Table element is mapped to a SpecHierarchy element in ReqIF.

In the example: 2 DOORS tables result in 2 SpecHierarchy elements for the roots of the tables.

2.6.2 Mapping the rows and colums of the DOORS table

Figure 5: Screenshot of DOORS table (rows and columns)

Each DOORS table row (Row1 and Row2 on the right) is mapped to a ReqIF SpecHierarchy element. In
addition, each DOORS table cell (bold rectangles on the right) is mapped to a ReqIF SpecHierarchy
element.

In the example: The first DOORS table (red on the left) has 2 rows with 2 cells each.

Thus, 2 SpecHierarchy elements need to be exported for the rows and additional 4 SpecHierarchy elements
need to be exported for the cells of this table.

2.6.3 Summary of the example mapping

The following table describes how to map the first DOORS table shown in the previous figures to ReqIF
SpecHierarchy elements. The ReqIF standard dictates that each SpecHierarchy element must reference a
SpecObject element, so the contents of the objects are shown additionally.

DOORS Structure ReqIF representation (including references to SpecObjects)

>> Table

 Row 1

 Cell1

 Cell2

 Row 2

 Cell1

 Cell2

SH i→ SpecObject[ReqIF.Text = “<table><tr>..</tr></table>”]

 SH i→ SpecObject

 SH i→ SpecObject[ReqIF.Text=“XXX C1R1”]

 SH i→ SpecObject[ReqIF.Text=“XXX C2R1”]

 SH i →SpecObject

 SH i→ SpecObject[ReqIF.Text=“XXX C1R2”]

 SH i→ SpecObject[ReqIF.Text=“XXX C2R2”]

 16
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

(SH means: SpecHierarchy, i means: with ‘isTableInternal set to true’,

→ means: ‘SpecHierarchy references SpecObject’.

[foo=bar] means: ‘SpecObject has attribute called foo with value bar’,

indentation explains parent-child-relationships of SpecHierarchy elements)

As you can see, the root SpecHierarchy element has a ReqIF attribute called ReqIF.Text with an XHTML
value. This attribute value is used to store an alternative XHTML representation of the whole table. In the
example, the contents of this attribute would look like this:

<table>

<tr>

 <td> XXX C1R1 </td>

 <td> XXX C2R1 </td>

 </tr>

 <tr>

 <td> XXX C1R2 </td>

 <td> XXX C2R2 </td>

 </tr>

</table>

2.7 How to handle Embedded Objects

The ReqIF standard describes how embedded objects should be handled (in section 10.8.20). The aim of this
chapter is to give a more detailed recommendation to simplify tool implementation.

2.7.1 Problem Statement

The ReqIF standard is clear on what elements should be present for embedded objects.

However, it lacks details on:

• The content of those elements

• The presentation of those elements.

The elements are:

• Object: A link to the object (typically a relative path)

• Type: A MIME-Type

• Image: Another embedded object of type image/png

• Text: An alternate text, which may be XHTML-Formatted

The following table captures the open issues:

 17
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Figure 6: Issues concerning embedded objects

2.7.2 General Considerations

1) The information regarding the embedded object must never be misleading or inconsistent. It is preferable
to have information loss than to provide inconsistent information. (E.g. it is preferable to replace a
screenshot image with a generic icon, if the screenshot does not reflect the object's content.)

2) If an embedded object that originated from a ReqIF import is not modified, all of its related information
(mime-type, image, description) and the external file itself should be exported unchanged.

3) If an embedded object that originated from a ReqIF import is modified, its image and description must be
updated (The mime-type may change, as described below.)

4) Embedded Objects of type image/png are special and do not need an (additional) image and description.

2.7.3 Rules

1) Embedded Objects must always have a mime type. If the type cannot be determined, it shall be set to
application/octet-stream.

2) If the content of an object changes, then the tool must update the alternate text and the image. This will
prevent these from containing information that is inconsistent with the new object content.

3) The mime type is allowed to change if (a) the type information is made more precise or (b) the content
changes. Scenario (a) could be that the generic application/octet-stream type is changed into something
more specific (e.g. application/msword). Scenario (b) could be that the content changes due to the tool
chain on the target system. For instance, an OLE-Object could be unpacked, edited and embedded with
a specific type (e.g. application/msword).

4) The image can fall in one of three categories: (a) a generic placeholder image (e.g. question mark); (b)
an application-specific image (e.g. MS Word); (c) a screenshot of the content. Any of these is allowed,
but implementors are encouraged to show as much information as possible.

5) While the placeholder text supports XHTML, this is discouraged. It should be plain text.

6) If a tool can embed the object, then the image and description need not be shown. Otherwise, either the
image or the description must be shown (or both). It is recommended to provide the description text in
the form of a tool tip that is associated with the image.

7) There are no restrictions to the size of the image. It is recommended for the rendering tool to shrink it if
necessary.

8) A tool that exports ReqIF from a requirements authoring tools that supports OLE objects
(for example: IBM DOORS) should export OLE objects either in their native MIME type’s format (e.g. as
Microsoft .doc-file with MIME-type application/msword) OR wrapped in RTF, as shown in the following
example:

<xhtml:object data="files/powerpoint.rtf" height="96" type="application/rtf"

width="96">

 18
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

 <xhtml:object data="files/powerpoint.png" height="96" type="image/png"

 width="96">

 This text is shown if alternative image can't be shown

 </xhtml:object>

</xhtml:object>

2.8 Formatting conventions

This chapter defines conventions that SHOULD be used by ReqIF exporting tools for formatting to maximize
interoperability.

If there is more than one solution for representing a specific way of formatting, ReqIF exporting tools
SHOULD use the formatting mentioned in the ReqIF standard, or the common way of formatting in XHTML.
For those cases, this prefered formatting is called "Recommended" in the column of the same name.

ReqIF importing tools MUST be able to deal with all kinds of formattings included in the XHTML modules
mentioned in chapter 10.8.20 of the OMG ReqIF1.2 standard. That means: ReqIF importing tools MUST
support ALL elements shown below, with the exception of the style attribute with margin-left (for indentation).
ReqIF importing tools MUST support any additional elements defined in the XHTML modules mentioned in
ReqIF.

The following table shows the formatting conventions.

Kind ReqIF.Text Recommended Description

Bold Text Bold Recommended (standard element for bold in XHTML).
Represented by using the element.

Bold Text Bold --- Represented by using the element.

Italic Text Italic Recommended Represented by using the <i> element.

Italic Text Italic --- Represented by using the element.

Italic Text Italic --- Represented by using the <cite> element.

Underlined
Text

Underlined Recommended Represented by using the style attribute set to
text-decoration:underline.

Underlined
Text

Underlined --- Represented by using the <ins> element.

Strike
Through
Text

Strike Through Recommended (recommended by ReqIF standard). Represented
by using the style attribute set to text-
decoration:line-through.

Strike
Through
Text

Strike Through --- Represented by using the element.

Superscript
Text

NormalSuperscript Recommended (standard XHTML). Represented by using the
<sup> element.

Subscript
Text

NormalSubscript Recommended (standard XHTML). Represented by using the
<sub> element.

Indentation The second line

is indented,

the third line is
indented even
further.

Recommended Represented by using <blockquote> elements.
Simple, straight-forward solution that is
compatible with ReqIF. It explicitly uses XHTML
elements and therefore can be easily processed
by XML parsers.

 19
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Kind ReqIF.Text Recommended Description

Indentation The second line

is indented 10
pixels,

the third line is
indented 20
pixels.

--- Represented by using the style attribute set to
margin-left:<indentation>.

Unordered
List

• First Bullet
Point

• Second
Bullet Point

• Third Bullet
Point

Recommended (standard XHTML). Represented by using the
 and elements.

Ordered List 1. Number
One

2. Number
Two

3. Number
Three

Recommended (standard XHTML). Represented by using the
 and elements.

Colored
Text

Red Recommended (recommended by ReqIF standard). Represented
by using the style attribute set to color:<color>

Additional note: A ReqIF exporting tool SHOULD NOT export XHTML headline elements (<h1> ... <h6>).
Rather, the "plain text" of headlines SHOULD be represented by the ReqIF.ChapterName attribute, and the
level of the headline SHOULD be represented by appropriately nested SpecHierarchy instances.

Here’s the formatting conventions defined as an HTML file:

2.9 How to represent a conversation identifier

The ReqIF standard currently does not allow identifying which “conversation” (a.k.a. exchange process) a
ReqIF XML document belongs to.

This could be solved by having an explicit “conversation identifier”, that means: each exchange process gets
its own, distinct identifier. It is an identifier that is created during the first export of a ReqIF XML document in
a chain of exports and imports and is not changed by following imports and exports of ReqIF XML documents.
To preserve the conversation identifier, each exported ReqIF file stores the conversation identifier.

As a recommendation on how to store such a conversation identifier, use a section in the ReqIF tool extensions
analogous to this example:

<REQ-IF-TOOL-EXTENSION xmlns:reqif-common=”http://www.prostep.org/reqif”>

<reqif-common:EXCHANGE-CONVERSATION>

<reqif-common:IDENTIFIER>_6ced3339-9916-44f7-b9f0</reqif-common:IDENTIFIER>

</reqif-common:EXCHANGE-CONVERSATION>

</REQ-IF-TOOL-EXTENSION>

 20
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

In that example, the conversation identifier is _6ced3339-9916-44f7-b9f0. Replace this value by a value

created by your tool. If there are several ReqIF exchange files (.reqif-Files) in a ReqIF ZIP archive (.reqifz-
File), all conversation identifiers contained in these ReqIF exchange files must be identical.

Note that as this is an extension to the capabilities of the ReqIF standard, it may be raised as an issue against
a future version of the ReqIF specification.

2.10 How to represent links from/to external elements

The ReqIF standard contains the SpecRelation concept to represent relations between SpecObjects. Thus,
links between requirements are possible. However, there is currently no way to represent links to elements
that are external to the requirements authoring tool in ReqIF, like links to JIRA issues or UML modeling tool
elements.

The convention described in this clause overcomes this restriction. Note that as this is an extension to the
capabilities of the ReqIF standard, it may be raised as an issue against a future version of the ReqIF
specification.

The following table shows the properties that are defined for external links by this convention:

The following XML example shows how to represent external links with the above properties in XML. Note that
the same XML namespace as for the conversation identifier is used (see clause 2.9). Note also that the tool
extensions described in this Implementation Guide may appear in any order in the XML document.

 21
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2.11 How to deal with RelationGroup elements

The ReqIF standards allows to export SpecRelation instances that are not contained in any RelationGroup
instance.

For those “free floating” SpecRelation instances, it is unclear in which Specification the source and target
SpecObject are contained in (as this would be defined by a RelationGroup).

In order to easily identify and locate the source and target object of a SpecRelation, the recommendation is:

Put a SpecRelation in a RelationGroup at least when the SpecRelation is going across the boundary
of one Specification AND both the source and the target SpecObject are part of a Specification.

2.12 How to deal with RelationGroupType elements

Due to a bug in the current ReqIF XML schema, it is possible to assign a RelationGroupType (including
AttributeDefinition elements) to a RelationGroup element, but it is not possible to assign AttributeValue
elements to the RelationGroup.

As this may lead to inconsistencies, the current recommendation is not to add any AttributeDefinition
elements to a RelationGroupType instance.

Note that the bug is a potential issue for a future version of the ReqIF specification.

 22
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2.13 How to specify a maximum length for string datatypes, when the
requirements authoring tool does not limit string length

The DatatypeDefinitionString class in the ReqIF standard has a mandatory attribute maxLength. In

its constraints, the ReqIF standard defines:

„The length of the string value held in any data element defined by DatatypeDefinitionString must not
exceed the value of DatatypeDefinitionString::maxLength.“

This constraint holds, even if the requirements authoring tool that is the source of the export supports only
string datatypes with unlimited lengths. In that case, ReqIF tools should export a sensible maximum value for
maxLength, for example a value that makes sense from a technical point of view.

2.14 Attribute handling in database vs. document oriented requirements
authoring tools

Requirements authoring tools differ in the way they handle requirement attribute sets.

In database-oriented tools like Siemens Teamcenter, each requirement may have a different set of attributes.
In a document-oriented tool like IBM DOORS, all the objects in a formal module have the same attribute set.

This leads to problems when a ReqIF file is exported from a tool that supports multiple attribute sets (leading
to multiple SpecObjectTypes in ReqIF), and imported in a tool that supports only one.

To avoid this problem, when a ReqIF importing tool encounters a ReqIF file containing multiple
SpecObjectTypes, before importing the file into a tool that supports only one SpecObjectType, the tool must
merge the attributes into one SpecObjectType. Later, during export, the ReqIF tool must restore the original,
separate SpecObjectTypes again.

By doing this, information loss and unwanted modifications are prevented.

The recommendation for ReqIF tools to merge/unmerge the attributes is:

• During import, for each SpecObject:

o The ReqIF tool stores each SpecObject’s identifier, its SpecObjectType and the list of its
contained attributes.

o If the same attribute name reoccurs in more than one SpecObjectType, but the type of the
attribute differs, the ReqIF tool must rename the other occurrences of the attribute.
(If the name and type are equal, the existing attribute must be reused.)

o The ReqIF tool must populate an additional enumeration attribute with the names of the
original object types and for each object, set it to the original object type (so that the users are
aware which type was used in the ReqIF file and, thus, which attributes are available).

• During export, if the option to keep the SpecObjectType is enabled:

o For each previously imported SpecObject, the ReqIF tool must:

▪ Export the SpecObjectType and SpecObjectType identifier stored for it during import

▪ Only export attributes that are part of the SpecObject’s stored SpecObjectType.

▪ For attributes that are NOT part of the SpecObject’s stored SpecObjectType: if any of
them has been changed by the user, warn the user.

▪ Use the stored attribute identifier and attribute name on export, even in case it was
renamed during import.

 23
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

o For a new SpecObject (that a user created in the requirements authoring tool between import
and export)

▪ Assign the SpecObject’s type according to the value of the enumeration attribute
created during import.

▪ The same rules apply as for exporting an existing SpecObject

2.15 How to deal with missing attribute values and default values

The OMG ReqIF standard leaves some room for interpretation when it comes to attribute values that are not
present in the ReqIF file (while their attribute definition is).

When a ReqIF tool makes the initial import or an update, if an attribute value for an attribute definition that is
part of a ReqIF file is missing for a SpecObject, that means:

• If a default value is defined for that attribute in the ReqIF file, set the attribute value in the target
requirements authoring tool to that default value.

• If no default value is defined in the ReqIF file, set the attribute value in the target requirements
authoring tool to “Nothing” (i.e. "unset" the attribute).

2.16 How to reimport a previously imported specification when
requirements were deleted

In a roundtrip scenario it can happen that a supplier needs to import a specification again.

Maybe the customer deleted some requirements or didn’t export them accidentally. These requirements are
then missing in the second ReqIF file to be imported (compared to the previously imported ReqIF file).

For the supplier to know which requirements are missing, the importing tool should identify the differences
between the ReqIF file and the existing specification, and mark the requirements as deleted in the specification
in the target requirements authoring tool.

2.17 Values of the accuracy attribute of DatatypeDefinitionReal

On page 61, the ReqIF standard document defines the accuracy of an attribute that contains real values as
follows: “Denotes the supported maximum precision of real numbers represented by this data type.”

While the ReqIF standard defines that the accuracy must be specified as an integer, it doesn’t define which
values should be used exactly.

To foster interoperability between tools, the recommendation is:

On export, either export an accuracy with value 32 for single precision floating point numbers, or a value of 64
for double precision floating point numbers. On import, the same interpretation holds. If the ReqIF file contains
any other value than 32 or 64 for accuracy, the default interpretation is double precision floating point numbers
(64).

NOTE: This is in line with how IEEE 754 defines the binary format for floating point numbers.

 24
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2.18 How to represent objects that are reused in Requirements Authoring
Tools in ReqIF

The ReqIF standard compliant way to export re-used objects is by exporting a single SpecObject and
referencing that SpecObject from multiple SpecHierarchies (which might be part of the same or different
Specifications).

When importing a reused SpecObject to a requirements authoring tool that doesn’t support reuse, and then
exporting the object again, the process is:

If there are two or more copies of that reused object in the requirements authoring tool, consolidate them into
one SpecObject in the ReqIF export. Use the original ReqIF identifier (as it was in the ReqIF file that has been
imported) so that there’s again a single reused SpecObject, as in the ReqIF file imported before.

2.19 Only one attribute value per attribute

For any SpecObject, at most 1 AttributeValue instance per referenced AttributeDefinition is allowed.

2.20 How to simplify XHTML-content

Chapter “10.8.20 AttributeValueXHTML”, sub chapter “3. Handling information loss” of the ReqIF standard
states about simplified attribute values:

“The purpose of the isSimplified attribute is to mark an AttributeValueXHTML element if an importing tool has
been unable to interpret the formatted attribute value and thus create the possibility to inform users about it.”

However, chapter 10.8.20 does not tell tool vendors how the content of the attribute value can actually be
simplified as needed so that the importing requirements authoring tool can render it afterwards.

The following table contains a recommendation for such a transformation on a XHTML level. Tool vendors
may adapt it to their needs if necessary.
For an overview of all the XML elements that are used by the ReqIF XHTML schema, see clause 3.3, “XML
tags used in XHTML”.

Topic Description

Introduction

In general, the rules should be applied in three steps.

1. Apply the “Rules for logical markup” to physically represent logical markup,

2. Apply the “Rules for physical Markup”, and

3. Apply the “Rules for Styles“

A ReqIF tool only needs to simplify content that can not be rendered in a adequate way
in the requirements authoring tool or goes beyond the text formatting capabilities of the
requirements authoring tool.

 Therefore, It may not be necessary to apply all of the following rules for a given step.

Rules for logical
markup

The simplification algorithm shall convert any simple Datatype (bool, int, real, date) that
is not supported in the target tool towards string.

The simplification algorithm shall ignore the id or title attribute of a tag.

 25
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Topic Description

The simplification algorithm shall convert a code formatted text to a monospaced font
text. Therefore it is recommended to replace the starting and ending "Code" tags with
the matching "tt" tags.

The simplification algorithm shall convert a preformatted text to a paragraph. Therefore
it is recommended to replace the starting and ending "pre" tags with the matching "p"
tags.

The simplification algorithm shall convert a section header to a paragraph. Therefore it
is recommended to replace the starting and ending "h*" tags with the matching "p" tags.

The simplification algorithm shall convert an unordered list to a paragraph. Therefore it
is recommended to replace the starting and ending "ul" tags with the matching "p" tags.

The simplification algorithm shall convert an ordered list to a paragraph. Therefore it is
recommended to replace the starting and ending "ol" tags with the matching "p" tags.

The simplification algorithm shall convert a definition list to a paragraph. Therefore it is
recommended to replace the starting and ending "dl" tags with the matching "p" tags.

The simplification algorithm shall convert a list item to a string with a following newline.
Therefore it is recommended to replace the starting "li" tag with the innerText and the
ending "li" tag with a newline (br) tag.

The simplification algorithm shall convert a blockquote to a quotation mark embedded
text. Therefore it is recommended to replace the starting and ending "blockquote" tags
with a """ symbol.

The simplification algorithm shall convert a quote with reference to a quotation mark
embedded text. Therefore it is recommended to replace the starting and ending "q" tags
with a """ symbol.

The simplification algorithm shall convert a short quote to a quotation mark embedded
text. Therefore it is recommended to replace the starting and ending "cite" tags with a """
symbol.

The simplification algorithm shall convert a division to a paragraph. Therefore it is
recommended to replace the starting and ending "div" tags with the matching "p" tags.

The simplification algorithm shall convert a strong emphasis to a boldface. Therefore it
is recommended to replace the starting and ending "strong" tags with the matching "b"
tags.

The simplification algorithm shall convert an emphasis font to an italic font. Therefore it
is recommended to replace the starting and ending "em" tags with the matching "i" tags.

The simplification algorithm shall convert an object to a string with its filename.
Therefore it is recommended to delete the "object" tags and replace it with the filename
of the embedded object.

The simplification algorithm shall convert an anchor to a string. Therefore it is
recommended to replace the "a href" tag with the symbols "(->" and add the target
behind it. After the target close the bracket with a ")"

The simplification algorithm shall ignore an abbreviation. An abbreviation consists of
"abbr" tags.

The simplification algorithm shall ignore a sample text. A sample text consists of "samp"
tags.

The simplification algorithm shall ignore a keyboard text. A keyboard text consists of
"kbd" tags.

The simplification algorithm shall ignore a table head. A table head consists of "thead"
tags.

 26
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Topic Description

The simplification algorithm shall ignore a table body. A table body consists of "tbody"
tags.

The simplification algorithm shall ignore a table foot. A table foot consists of "tfoot" tags.

The simplification algorithm shall ignore a column group. A column group consists of
"colgroup" tags.

The simplification algorithm shall ignore a column. A column consists of "col" tags.

The simplification algorithm shall ignore a table caption. A table caption consists of
"caption" tags.

The simplification algorithm shall ignore a html body. A html body consists of "body"
tags.

The simplification algorithm shall ignore a html root element. A html root element
consists of "html" tags.

The simplification algorithm shall ignore an address information. An address information
consists of "address" tags.

The simplification algorithm shall ignore inserted content. Inserted content consists of
"ins" tags.

The simplification algorithm shall ignore an acronym. An acronym consists of "acronym"
tags.

The simplification algorithm shall ignore a variable. A variable consists of "var" tags.

The simplification algorithm shall ignore a definition. A definition consists of "dfn" tags.

The simplification algorithm shall ignore decreased font size. Decreased font size
consists of "small" tags.

The simplification algorithm shall ignore increased font size. Increased font size consists
of "big" tags.

The simplification algorithm shall ignore a parameter. A parameter consists of "param"
tags.

The simplification algorithm shall ignore a definition of a term in a definition list. A
definition of a term consists of "dd" tags.

The simplification algorithm shall ignore a definition term in a definition list. A definition
term consists of "dt" tags.

Rules for
physical Markup

The simplification algorithm shall convert subscripted text to a special string. Therefore it
is recommended to replace the start "sub" tag with "_(" and the end "sub" tag with ")"

The simplification algorithm shall convert superscripted text to a special string.
Therefore it is recommended to replace the start "sup" tag with "^(" and the end "sup"
tag with ")"

The simplification algorithm shall convert a paragraph to a newline. Therefore it is
recommended to replace the ending "p" tag with a newline (br) tag and ignore the
starting "p" tag.

The simplification algorithm shall ignore a boldface font. A boldface font consists of "b"
tags.

The simplification algorithm shall ignore an italic font. An italic font consists of "I" tags.

The simplification algorithm shall ignore an underlined font. An underlined font consists
of "u" tags.

 27
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Topic Description

The simplification algorithm shall ignore an monospaced font. An monospaced font
consists of "tt" tags.

The simplification algorithm shall convert a table to a paragrah. Therefore it is
recommended to replace the starting and ending "table" tags with the matching "p" tags.

The simplification algorithm shall convert a tablerow to a tabstop seperated text row.
Therefore it is recommended to replace the ending "tr" tag with a newline (br) tag and
the </td><td> tags with tabstopps and ignore the start tag (tr) of a table row.

The simplification algorithm shall convert a tableheader to a tabstop seperated text row.
Therefore it is recommended to replace the ending "th" tag with a newline (br) tag and
the </td><td> tags with tabstopps and ignore the start tag (th) of a table header..

The simplification algorithm shall convert a horizontal rule to a row of 40 hyphens with a
following break. Therefore it is recommended to delete the starting and ending "hr" tag
and replace it with 40 "-" symbols. After that it is recommended to add a newline (br) tag.

Rules for Styles

The simplification algorithm shall convert every unicode font family into a standard font.
The tool may use a predefined font or ask the user to select one. Not unicode based
fonts may cause wrong symbols. If the font-family is known to be not unicode (e.g.
Symbol, Wingdings1, Wingdings2) a warning must be placed in front of the simplified
text. It is recommended to place a warning in front of text from unclear font-families too.
It is recommended to recognize Arial, Times New Roman, Helvetica and Sans Serif as
unicode font-families and allow a user defined list for coporate design font-families.

2.21 How to deal with access policy data for SpecHierarchy elements

The ReqIF standard states in chapter 10.8.36, SpecHierarchy, constraint [5]:

„If the set of editableAtts is empty for a SpecHierarchy element, the following constraint applies:

 If there is a parent SpecHierarchy element, the set of editable attributes is copied from the parent

SpecHierarchy element. If there is no parent SpecHierarchy element, all attribute values for the

SpecHierarchy are considered read-only”

The word “empty” may be ambiguous in the sentence above, so it is clarified here.
What “empty” means: if the set of editableAtts is not present in the ReqIF XML file.
What it does not mean is: if the set of editableAtts is present, but empty in the ReqIF XML file.
If the set was present, but empty, there would be no way to distinguish between the case that no attributes
are editable and the case that attributes are inherited.
The wording may be changed in a future version of the ReqIF standard.

Furthermore, there is an issue concerning editableAtts inheritance: inheritance only works properly if the
parent and the child SpecHierarchy’s SpecObject element have the same SpecObjectType, otherwise, what
is inherited is undefined.
In case the parent SpecHierarchy’s SpecObject element has a different SpecType, exporting ReqIF tools
should explicitly specifiy a set of editableAtts for the child SpecHierarchy element, in other words: don’t use
the editableAtts inheritance mechanism when the SpecType changes.

 28
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

2.22 How to resolve conflicting isEditable values for AttributeDefinition-
Enumeration

The ReqIF standard defines this: if an AttributeDefinitionEnumeration has its isEditable flag set to false or
the flag is omitted, the user of the requirements authoring tool is not allowed to modify its list of enumeration
literals.

Concerning AttributeDefinitionEnumeration, the following conflict may occur as a consequence:

• one AttributeDefinitionEnumeration element (A) is editable

• a different AttributeDefinitionEnumeration element (B) is not editable

• both AttributeDefinitionEnumeration elements refer to the same DatatypeDefinitionEnumeration,
which defines the enumeration literals

If that conflict occurs, it may not be clear whether the first AttributeDefinitionEnumeration element (A) should
be treated as editable or not, as changes to the list of enumeration literals will be visible in the second
AttributeDefinitionEnumeration element (B).

The recommendation to resolve this conflict is:

• AttributeDefinitionEnumeration (A) is editable, and changes to it are visible in
AttributeDefinitionEnumeration (B).

• AttributeDefinitionEnumeration (B) cannot be edited itself.

• If this is not the desired behavior, two DatatypeDefinitionEnumeration elements need to be present
in the ReqIF exchange file, one for (A), one for (B).

2.23 How to use xsi:schemaLocation in ReqIF XML documents

A ReqIF XML document can give a hint where to find the ReqIF XML schema to be used for validating by
using the xsi:schemaLocation attribute. If it does so, it is recommended to use the absolute path of the

ReqIF XML schema on the internet, as shown in the following example root element of a ReqIF XML document:

<REQ-IF xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/spec/ReqIF/20110401/reqif.xsd

http://www.omg.org/spec/ReqIF/20110401/reqif.xsd"

xmlns="http://www.omg.org/spec/ReqIF/20110401/reqif.xsd" >

Note that is equally valid not to include a xsi:schemaLocation attribute at all.

Note as well that a tool that processes a ReqIF XML document is not obliged to use the XML schema at the
specified location for validation.

 29
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

3 Annex

3.1 Links to OMG ReqIF1.2 example files

OMG ReqIF1.2 test files can be found under:
https://hudson.eclipse.org/rmf/job/rmf.develop.luna/lastSuccessfulBuild/artifact/test-data/

The ReqIF example files can be opened with ProR, a tool that is part of the Eclipse project RMF and can be
found at the following URL:

http://www.eclipse.org/rmf/

3.2 Differences to prior RIF/ReqIF versions

The following sections highlight the key changes from prior RIF/ReqIF versions. Note that while these sections
give an overview, it is necessary for implementers to refer to the OMG ReqIF1.2 specification for details and
additional information.

3.2.1 Differences from OMG ReqIF1.0.1 to OMG ReqIF1.2

Only editorial changes have been performed, no changes to the ReqIF XML schema have been performed
since ReqIF1.0.1. The issues that have been resolved can be found under:

http://www.omg.org/issues/reqif-rtf.html

3.2.2 Differences from RIF1.2 to OMG ReqIF1.2

Change
ID Change Change affects Rationale

ReqIF-
Chng-1

Removed <format> sub element from
DatatypeDefinitionDate

XML Schema In RIF1.2, the possibility to specify
custom data formats has already
been removed from the UML
model, but not from the XML
schema. As this is considered
inconsistent, it is now removed
from the schema as well.

ReqIF-
Chng-2

Renamed the following XML elements:
a) HEADER ------> THE-HEADER
b) RIF-HEADER -----> REQ-IF-HEADER,
c) RIF-CONTENT -----> REQ-IF-CONTENT
d) RIF ------> REQ-IF
e) RIF-TOOL-EXTENSION ------>
REQ-IF-TOOL-EXTENSION

XML Schema /
Specification

a) This is a reaction to the fact that
some technologies (like JAXB) had
problems compiling the schema.
b) to e) Renaming is necessary
due to the changed abbreviation
"ReqIF"

ReqIF-
Chng-3

There are new DatatypeDefinitions,
AttributeDefinitions, and AttributeValues for
XHTML content (DatatypeDefinitionXHTML,
AttributeDefinitionXHTML,
AttributeValueXHTML). They replace all
other ways of including binary data in
RIF1.2
The specification has been made more
precise concerning the usage of MIME-
Types for external objects and the
representation of alternative images etc.

XML Schema /
Specification

https://hudson.eclipse.org/rmf/job/rmf.develop.luna/lastSuccessfulBuild/artifact/test-data/
http://www.eclipse.org/rmf/
http://www.omg.org/issues/reqif-rtf.html

 30
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Change
ID Change Change affects Rationale

ReqIF-
Chng-4

Source and target specification of a
RelationGroup are now both associated to
the RelationGroup, there is no containment
relation as it were between SpecGroup and
a RelationGroup element any more.

Also, the associations between
SpecRelations and SpecObjects and the
relations between RelationGroups and their
source and target specification have been
marked <<global>> with a stereotype. This
means that SpecRelations can now cross
file boundaries, in contrast to RIF1.2 (they
use xsd:string as referencing type, instead
of xsd:IDREF)

XML Schema /
Specification

There has been a request to re-
enable cross-file relationships in
the new version of the
specification.

ReqIF-
Chng-5

Removed the attribute "author", introduced
"reqIFToolId" and “repositoryId” (in
ReqifHeader).
This changes the order of XML elements
(alphabetically).

XML Schema /
Specification

As most RIF files are not created
manually, it is more sensible to
have an attribute that specifies
the exporting RIF tool - separate
from the "sourceToolID", which
should be used for RM tool
identifiers.
This has also become necessary
as there needs to be a way to track
which ReqIF tool has performed a
simplification and what repository
the requirements originate from.

ReqIF-
Chng-6

Added the mandatory attribute
"isTableInternal" to SpecHierarchy
elements.

XML Schema /
Specification

ReqIF-
Chng-7

A new optional attribute has been added to
SpecHierarchy (isSimplified) to handle
information loss between different RM tools

XML Schema /
Specification

ReqIF-
Chng-8

A new RIF information type has been
introduced (AlternativeID)
to enable migration of RIF1.1a IDs.

XML Schema /
Specification

This provides a mechanism to
migrate RIF1.1a Ids

ReqIF-
Chng-
10

The usage of the longName attribute has
been specified rigidly, including making it
the primary mechanism for
specifying the name of enumeration literals,
as described in the compliance
requirements

Specification

ReqIF-
Chng-
11

The its:dir attribute has been removed, as it
can be replaced by using the style XHTML
attribute

XML Schema /
Specification

ReqIF-
Chng-
12

The concepts “SpecGroup” and
“SpecGroupHierarchy” have been removed.
A “Specification” now acts as the root of a
“SpecHierarchy”.

XML Schema /
Specification

For some time, there has been
discussion about the distinction of
SpecGroup, SpecGroupHierarchy
and SpecHierarchy. This is
clarified in OMG ReqIF.

ReqIF-
Chng-
13

There is now a distinct SpecType and
AttributeValueSimple for each simple
attribute value.

XML Schema /
Specification

This change greatly improves the
validation capabilities of the ReqIF
XML schema. ReqIF tools can now
validate simple attribute values
(bool, integer etc.) by using the
XML schema instead of using
custom validators.

 31
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

3.2.3 Differences from RIF1.1a to OMG ReqIF1.2

3.2.3.1 How OMG ReqIF1.2 handles IDs and references and how to deal with
RIF 1.1a-IDs

RIF1.1a:

In RIF1.1a, the “identifier“ attribute of „Identifiable“ had a „string“ type. References between RIF elements also
had a “string” type. This allowed RIF1.1a tools to relate elements within a RIF XML file as well as elements
from different files.

RIF1.2:

In RIF1.2, the “identifier“ attribute of „Identifiable“ got a „xsd:ID“ type. References between RIF elements got
a “xsd:IDREF” type. This had the benefit that identifier uniqueness and references between elements could
now be checked by the XML schema.

However, these new identifiers had the downside that they were not compatible with the RIF1.1a identifiers.
Additionally, referencing elements via the xsd:IDREF mechanism became possible only between elements in
the same XML document, so cross-XML-file referencing became difficult.

Both of these issues have been addressed in OMG ReqIF1.2.

OMG ReqIF1.2

In OMG ReqIF1.2, the “identifier“ attribute of „Identifiable“ still has a „xsd:ID“ type to enable checking for
uniqueness, which is identical to RIF1.2. Most references between OMG ReqIF1.2 elements also use the
xsd:IDREF mechanism of RIF1.2.

However, the exceptions are SpecRelation elements and RelationGroups. As links between requirements are
the most common case where cross-XML-file dependencies are needed (for example between customer
requirements and system requirements), a “global reference” may be specified in the XML file, meaning that
the type of the reference is “xsd:string” instead of “xsd:IDREF”.

Note that the content of the reference does not change (it still references an “identifier” with type “xsd:ID”),
only the type of the reference has been adapted to enable cross-file references which would otherwise be
prevented by the xsd:IDREF mechanism).

To deal with legacy RIF1.1a IDs, OMG ReqIF1.2 has the concept of an optional “AlternativeID”. (See chapter
“10.2 Identification of elements” in the specification). An instance of AlternativeID stores an “identifier”
attribute whose value must be equal to a RIF1.1a “identifier” attribute value in case of migration. Note that
this RIF1.1a ID MUST NOT be referenced from a ReqIF element in any case. The “identifier” attribute of the
“Identifiable” instance must be set to a RIF1.2 style identifier which may be different.

Figure 7: RIF1.1a “identifier” may be stored in "identifier" attribute of “AlternativeID” instance

Identifiable

+ d e sc : strin g [0 ..1]

+ id e n ti fie r: ID

+ la stC h a n g e : d a te T im e

+ lo n g N a m e : strin g [0 ..1]

Alternativ eID

+ id e n ti fie r: strin g
+ id e n t

1

+ a l te rn a tiv e ID

0 ..1

 32
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

3.2.3.2 Other differences from RIF1.1a to OMG ReqIF1.2

Change
ID Change Change affects Rationale

ReqIF-
Chng-1

Removed <format> sub element from
DatatypeDefinitionDate

XML Schema In RIF1.1a, there has been the
possibility to specify a custom date
format for the type
DatatypeDefinitionDate.
In ReqIF1.2, this possibility no
longer exists.

ReqIF-
Chng-2

Content split in three parts XML Schema /
Specification

In RIF1.1a, the RIF element acted
as a container for all the other
elements.
In OMG ReqIF1.2, the content is
split in three parts:
a header (THE-HEADER),
the core content part (REQ-IF-
CONTENT), and
a tool specific part (REQ-IF-TOOL-
EXTENSION)

ReqIF-
Chng-3

There are new DatatypeDefinitions,
AttributeDefinitions, and AttributeValues for
XHTML content (DatatypeDefinitionXHTML,
AttributeDefinitionXHTML,
AttributeValueXHTML). They replace all
other ways of including binary data in
RIF1.1a
The specification has been made more
precise concerning the usage of MIME-
Types for external objects and the
representation of alternative images etc.

XML Schema /
Specification

ReqIF-
Chng-4

Source and target specification of a
RelationGroup are now both associated to
the RelationGroup, there is no containment
relation as it were between SpecGroup and
a RelationGroup element any more.

Also, the associations between
SpecRelations and SpecObjects and the
relations between RelationGroups and their
source
and target specification have been marked
<<global>> with a stereotype.
Only <<global>> relations can cross XML
file boundaries.

XML Schema /
Specification

In RIF1.1a, any kind of reference
between RIF elements could cross
XML file boundaries.
In OMG ReqIF1.2, this has been
limited: only relations between
requirements or specifications can
cross XML file boundaries, while all
other relations (for example:
between a requirement and its
type) are limited to the same XML
file.
This allows for validation of non-
<<global>> relations using the
XML ID/IDREF mechanism.

ReqIF-
Chng-5

Removed the attribute "author", introduced
"reqIFToolId" and “repositoryId” (in
ReqifHeader).
This changes the order of XML elements
(alphabetically).

XML Schema /
Specification

As most RIF files are not created
manually, it is more sensible to
have an attribute that specifies
the exporting RIF tool - separate
from the "sourceToolID", which
should be used for RM tool
identifiers.

This has also become necessary
as there needs to be a way to track
which ReqIF tool has performed a
simplification and what repository
the requirements originate from.

 33
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

Change
ID Change Change affects Rationale

ReqIF-
Chng-6

Added the mandatory attribute
"isTableInternal" to
SpecHierarchy elements.

XML Schema /
Specification

ReqIF-
Chng-7

A new optional attribute has been added to
SpecHierarchy (isSimplified)
to handle information loss between different
RM tools

XML Schema /
Specification

ReqIF-
Chng-8

A new RIF information type has been
introduced (AlternativeID)
to enable migration of RIF1.1a IDs.

XML Schema /
Specification

ReqIF-
Chng-
10

The usage of the longName attribute has
been specified rigidly, including making it
the primary mechanism for
specifying the name of enumeration literals,
as described in the compliance
requirements

Specification

ReqIF-
Chng-
11

The its:dir attribute has been removed, as it
can be replaced by using the style XHTML
attribute

XML Schema /
Specification

ReqIF-
Chng-
12

The concepts “SpecGroup” and
“SpecGroupHierarchy” have been removed.
A “Specification” now acts as the root of a
“SpecHierarchy”.

XML Schema /
Specification

For some time, there has been
discussion about the distinction of
SpecGroup, SpecGroupHierarchy
and SpecHierarchy. This is more
clear in OMG ReqIF1.2.

ReqIF-
Chng-
13

There is now a distinct SpecType and
AttributeValueSimple for each simple
attribute value.

XML Schema /
Specification

This change greatly improves the
validation capabilities of the ReqIF
XML schema. ReqIF tools can now
validate simple attribute values
(bool, integer etc.) by using the
XML schema instead of using
custom validators.

 34
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

3.3 XML tags used in XHTML

The following table provides an overview of the XML tags that are used in the ReqIF XHTML schema. For
more details on these topics, see the W3C page http://www.w3.org/TR/xhtml-modularization/.

XML Tag Comments in XHTML Module

 Forced line break Text Module

 Generic language/style container Text Module

<object> Generic embedded object Object Module

<tt> Teletype or monospaced text style Presentation Module

<i> Italic text style Presentation Module

 Bold text style Presentation Module

<big> Large text style Presentation Module

<small> Small text style Presentation Module

 Indicates emphasis Text Module

 Indicates stronger emphasis Text Module

<dfn>
Indicates that this is the defining
instance of the enclosed term Text Module

<code>
Designates a fragment of computer
code Text Module

<q> Short inline quotation Text Module

<samp>
Designates sample output from
programs, scripts, etc. Text Module

<kbd> Indicates text to be entered by the user Text Module

<var>
Indicates an instance of a variable or
program argument Text Module

<cite>
Contains a citation or a reference to
other sources Text Module

<abbr> Indicates an abbreviated form Text Module

<acronym> Indicates an acronym Text Module

<sub> Subscript Presentation Module

<sup> Superscript Presentation Module

<ins> Inserted text Edit Module

 Deleted text Edit Module

<a> Anchor Hypertext Module

<h1> Heading Text Module

<h2> Heading Text Module

<h3> Heading Text Module

<h4> Heading Text Module

<h5> Heading Text Module

<h6> Heading Text Module

 Unordered list List Module

 Ordered list List Module

<dl> Definition list List Module

<pre> Preformatted text Text Module

<hr> Horizontal rule Presentation Module

<blockquote> Long quotation Text Module

<address> Information on author Text Module

<p> Paragraph Text Module

<div> Generic language/style container Text Module

<table> Used to describe tables Basic Tables Module

http://www.w3.org/TR/xhtml-modularization/

 35
© prostep ivip Association – All rights reserved

 ReqIF Implementation Guide referring to OMG ReqIF1.2 prostep ivip
 26 January 2024 Version 1.10

XML Tag Comments in XHTML Module

 List item List Module

<dt> Definition term List Module

<dd> Definition description List Module

<param> Named property value Object Module

<caption> Table caption Basic Tables Module

<tr> Table row Basic Tables Module

<th> Table header cell Basic Tables Module

<td> Table data cell Basic Tables Module

 Reading direction
Bi-directional Text
Module

2 ReqIF Recommendation 2022 / PSI 18 V2.1

White Paper
Titel der Publikation
Version 1.0

Titel der Publikation

prostep ivip association
Dolivostraße 11
64293 Darmstadt
Germany

Phone +49-6151-9287336
Fax +49-6151-9287326

psev@prostep.com
www.prostep.org

ISBN 978-3-948988-33-3
Version 1.1, 2024

